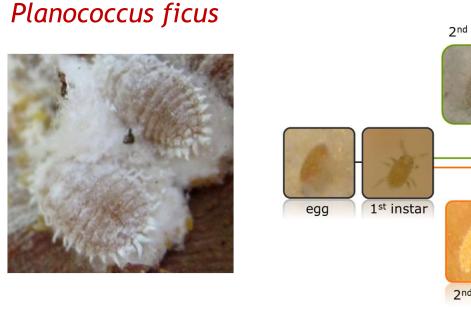
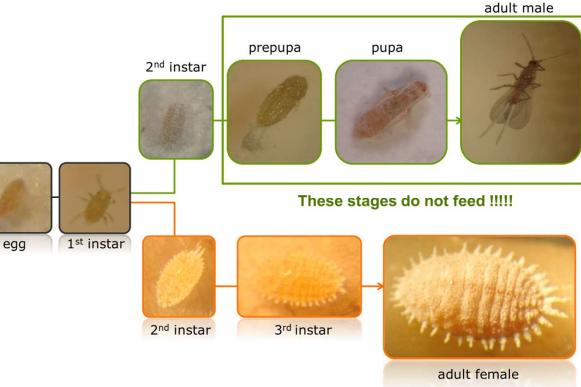


Testing the use of mating disruption in the management of vine mealybug populations in Alentejo vineyards

> Elsa Borges da Silva^{1,3}, Catarina Mourato³, António Mexia^{2,3}, and José Carlos Franco^{1,3*}


¹CEF-Forest Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, 1340-017 Lisboa, Portugal; ²LEAF-Linking, Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1340-017 Lisboa, Portugal;


³Instituto Superior de Agronomia, Universidade de Lisboa, 1340-017 Lisboa, Portugal

The problem

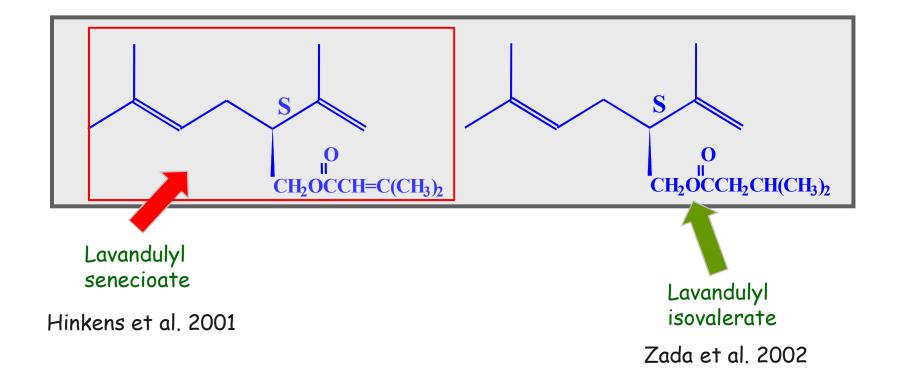
Vine mealybug (Hemiptera, Pseudococcidae)

Damage

mainly associated with feeding and honeydew excretion/sooty mold; mealybugs are also vectors of viroses (e.g., grapevine leafrollassociated virus (GLRaV), corkybark disease)

Management

- Chemical control is still the most common tactic
- However, insecticides are often ineffective due to the biological characteristics of mealybugs, e.g.
 - o cryptic behavior
 - wax body cover
 - overlapping generations



Identification of the vine mealybug sex pheromone

Planococcus ficus

5

Identification and synthesis of mealybug sex pheromone

Opened new opportunities for mealybug pest management

Monitoring

Mating disruption

Biological pecularities of mealybugs wich may favour MD

- Fragile and short-life males
- Males are very sensitive to the sex pheromone
- Females are sessile and wingless

HORTICULTURAL ENTOMOLOGY

USΔ

Pheromone-Based Mating Disruption of *Planococcus ficus* (Hemiptera: Pseudococcidae) in California Vineyards

VAUGHN M. WALTON,^{1, 2} KENT M. DAANE,^{1, 3} WALTER J. BENTLEY,⁴ JOCELYN G. MILLAR,⁵ THOMAS E. LARSEN,⁶ and RAKSHA MALAKAR-KUENEN¹

J. Econ. Entomol. 99(4): 1280-1290 (2006)

Sprayable microencapsulated formulation 3-4 applications per season

- Mealybug density influenced treatment impact
- $\circ~$ short effective lifetime of the sprayable formulation

USA

 Membrane dispensers (CheckMate® VMB-XL, Suterra LLC)

PRACTICAL WINERY & VINEYARD FEBRUARY 2014

BY David Langone, S. Kaan Kurtural, California State University, Fresno, and Kent M. Daane, University of California C Cooperative Extension, Parlier, Calif.

- Aerosol
 spray cans
 (Puffer®,
 Suterra LLC)
 - 2 puffers/acre

 Evaluated different number of dispensers

175 dispensers/acre 25 or 37.5 g

Journal of Insect Science

OPEN O ACCESS

Europe

RESEARCH

Mating Disruption of *Planococcus ficus* (Hemiptera: Pseudococcidae) in Vineyards Using Reservoir Pheromone Dispensers

Arturo Cocco,^{1,2} Andrea Lentini,¹ and Giuseppe Serra³

¹Dipartimento di Agraria, Università di Sassari, Viale Italia 39, 07100 Sassari, Italy

²Corresponding author, e-mail: acocco@uniss.it

³Istituto per lo Studio degli Ecosistemi, UOS di Sassari, Consiglio Nazionale delle Ricerche, Traversa La Crucca 3, 07100 Sassari, Italy

Subject Editor: Paul Robbins

J. Insect Sci. 14(144): 2014; DOI: 10.1093/jisesa/ieu006

• **Compared reservoir dispensers** (CheckMate, Suterra Inc) **with two doses**:

- o 625 dispensers/ha
 - 100 mg (62.5 g/ha) of the sex pheromone inconclusive
 - 150 mg (93.8 g/ha) of the sex pheromone reduction of mealybug density
- Positive effect on parasitism rate (>1.5-fold)

Entomologia Experimentalis et Applicata161:65-69, 2016

Entomologia Experimentalis et Applicata

Israel

Mating disruption method against the vine mealybug, *Planococcus ficus*: effect of sequential treatment on infested vines

Rakefet Sharon^{1,2}*, Tirtza Zahavi³, Tamar Sokolsky¹, Carmit Sofer-Arad¹, Maor Tomer¹, Rika Kedoshim¹ & Ally R. Harari⁴ ¹Northern Research and Development, MIGAL Institute, Kiryat Sh'mona 11016, Israel, ²Department of Science, Ohalo College, Katsrin 12900, Israel, ³Extension Service, Ministry of Agriculture, Kiryat Sh'mona 10200, Israel, and ⁴Department of Entomology, The Volcani Center, Bet Dagan 50250, Israel

Accepted: 2 May 2016

CheckMate VBM-XL, Suterra

625 dispensers/ha 150 mg

Influence of mealybug density

• Low infestation level – trap shutdown following 1-year treatment

• High infestation level – trap shutdown only after 2nd year treatment

Europe

(wileyonlinelibrary.com) DOI 10.1002/ps.5067

Influence of mating disruption on the reproductive biology of the vine mealybug, *Planococcus ficus* (Hemiptera: Pseudococcidae), under field conditions

Arturo Cocco,^{a*}^o Enrico Muscas,^a Alessandra Mura,^a Andrea Iodice,^b Francesco Savino^b and Andrea Lentini^a

Effect of MD applied over consecutive years

1st year

Membrane dispensers (Checkmate® VMB-XL; Suterra Inc.) 150mg, 625 (93.8 g/ha) and 1250 dispensers/ha (187.6 g/ha)

2nd and 3rd years

Rope dispensers (Isonet® PFX; Shin-Etsu Chemical Co. Ltd) 90 and 180mg 45 and 90 g/ha 500 dispensers/ha

- Reduction of % ovipositing females (by 18.8–66.2%)
- Absence of ovipositing females in the autumn, 2nd and 3rd years
- Increase of pre-oviposition period (up to 12.5 days)

Concentration of 90 g/ha – optimal pheromone load

Environmental Science and Pollution Research (2019) 26:10708–10718 https://doi.org/10.1007/s11356-019-04530-6

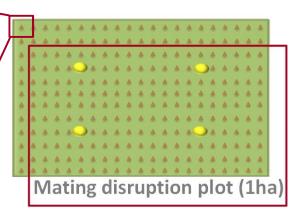
RESEARCH ARTICLE

Managing the vine mealybug, *Planococcus ficus*, through pheromone-mediated mating disruption

Andrea Lucchi¹ · Pompeo Suma² · Edith Ladurner³ · Andrea Iodice³ · Francesco Savino³ · Renato Ricciardi¹ · Francesca Cosci¹ · Enrico Marchesini⁴ · Giuseppe Conte¹ · Giovanni Benelli¹

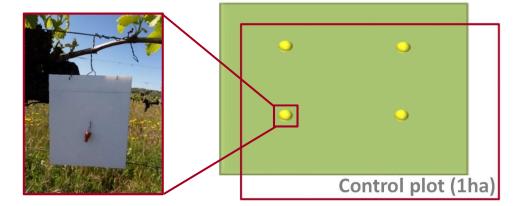
Rope dispensers (Isonet® PF, Shin-Etsu) 2-years study

Compared different number of dispensers: 300, 400, 500/ha


- MD reduced % mealybug infestation
- No differences among tested rates of dispensers

Europe

Experimental plots:


3 vineyards in Alentejo (1-2 ha/plot)

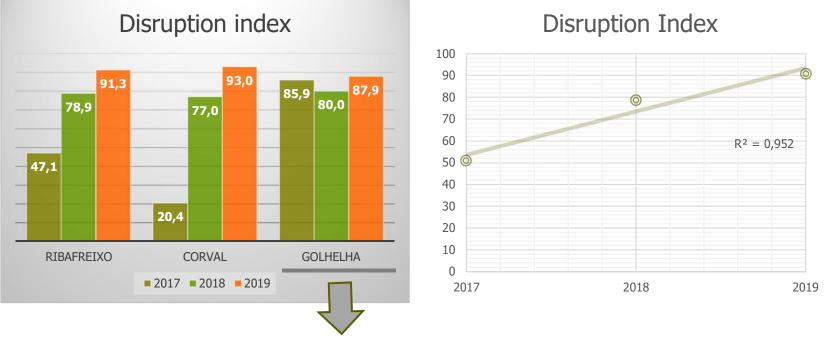
- Golhelha (Reguengos de Monsaraz)
- Monte do Duque (Corval)
- Ribafreixo (Vidigueira)

Period: 2017-2019

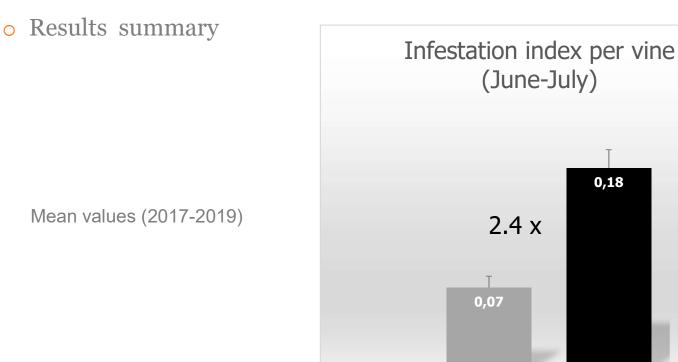
Treatment:

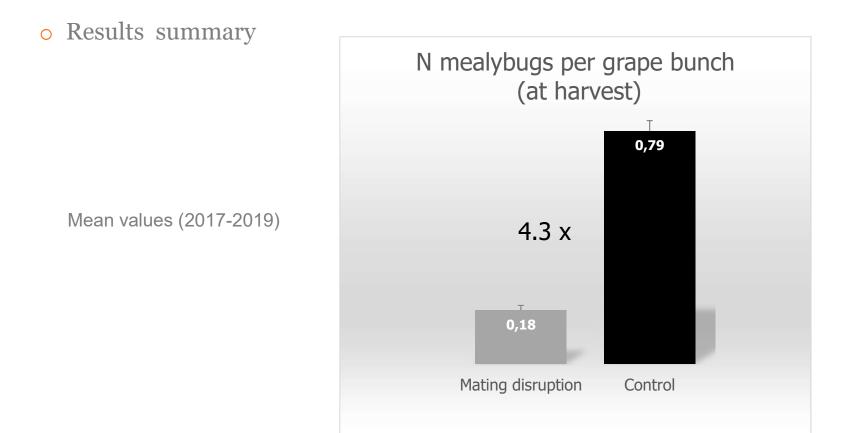
500 dispensers/ha (Isonet® PF, Shin-Etsu)

• Male flight monitoring


- o May-August
- o 4 traps/plot
- o weekly counts
- Grapevine infestation level
 - o June and July
 - o Visual observation trunk/branches/canopy (60 s/vine)
 - o 30 vines/plot
 - **Infestation index**: 0 no mealybugs; 1 isolated individuals; 2 few mealybug colonies; 3 several to many mealybug colonies
- Grape bunches infestation level at harvest
 - o 50-100 grape bunches per plot
 - Number of mealybug per bunch was counted

o Results summary




Very low mealybug density

Mating

disruption

Control

In summary

• MD seems to be an effective management tactic to control VM

• The effective dose:

- o 62-93 g/ha sex pheromone, i.e. ca. 400 dispensers/ha (Langone et al. 2014)
- o 93.8 g/ha sex pheromone, i.e. 625 x 150 mg dispensers/ha (Cocco et al. 2014)
- o 90 g/ha sex pheromone, i.e. 500 x 180 mg dispensers/ha (Cocco et al. 2018)
- o 54-90 g/ha, i.e., no differences between 300, 400, and 500 dispensers/ha (Lucchi et al. 2019)
- Mealybug density affects time needed for effective control
- MD affects the reproductive biology of VM
- MD may enhance biological control of VM

1.2

VM pherotypes

Naturwissenschaften (2010) 97:1047–1057 DOI 10.1007/s00114-010-0726-3

ORIGINAL PAPER

Male behaviors reveal multiple pherotypes within vine mealybug *Planococcus ficus* (Signoret) (Hemiptera; Pseudococcidae) populations

1

Hofit Kol-Maimon • Anat Levi-Zada • José Carlos Franco • Ezra Dunkelblum • Alex Protasov • Miriam Eliyaho • Zvi Mendel Lavandulyl senecioate

Lavandulyl isovalerate

 Variability in the response to the two identified components of the pheromone, in Mediterranean populations of VM

Kairomonal effect of the VM sex pheromone: possible increment of VM parasitism in MD plots

DOI: 10.1111/j.1570-7458.2007.00643.x

Kairomonal response of the parasitoid *Anagyrus* spec. nov. near *pseudococci* to the sex pheromone of the vine mealybug

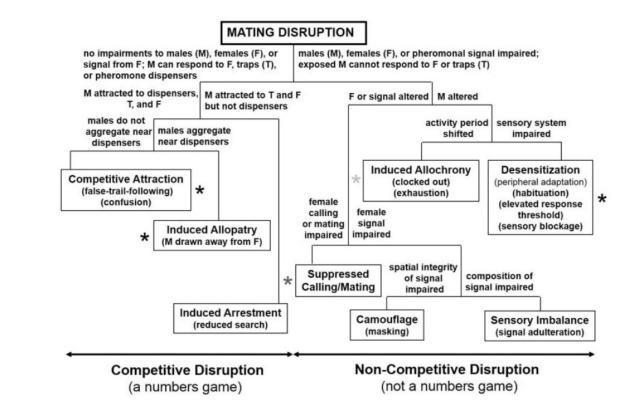
J.C. Franco^{1*}, E.B. Silva¹, E. Cortegano¹, L. Campos¹, M. Branco², A. Zada³ & Z. Mendel³ ¹Departamento de Protecção de Plantas e de Fitoecologia, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, 1349-017 Lisboa, Portugal, ²Departamento de Engenharia Florestal, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, 1349-017 Lisboa, Portugal, and ³Department of Entomology, Volcani Center, ARO, Bet Dagan 50250, Israel

Entomologia Experimentalis et Applicata126:122-130, 2008

Contents lists available at ScienceDirect Biological Biological Control Journal homepage: www.elsevier.com/locate/ybcon

Biological Control 58 (2011) 230-238

Vine mealybug sex pheromone increases citrus mealybug parasitism by *Anagyrus* sp. near *pseudococci* (Girault)


José Carlos Franco^{a,*}, Elsa Borges da Silva^a, Taiadjana Fortuna^{a,1}, Elisabete Cortegano^a, Manuela Branco^a, Pompeo Suma^b, Ivan La Torre^b, Agatino Russo^b, Miriam Elyahu^c, Alex Protasov^c, Anat Levi-Zada^c, Zvi Mendel^c

⁴ Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, 1249-017 Lisboa, Portugal ^b Dp. Gestione del Sistem Agroalimentari e Ambientali, Entomology sec., Univ. Catania, via S. Sofia, 100-95123 Catania, Italy ^b Department of Entomology, Violani Center, ARO, Bet Dagan 50226, Israel

- Attraction and retention of the parasitoid from surroundings
- Unmated females of VM live longer and thus are expected to be more exposed to parasitoids

Mechanism

of MD?

Miller & Gut (2015) Environ. Entomol. 44(3): 427-453

o Reducing the costs of application

Examples

 dual purpose mating disruption dispenser to *Lobesia botrana* & VM Development of the dual purpose mating disruption dispenser to control both the European grapevine moth, *Lobesia botrana*, and the vine mealybug, *Planococcus ficus*, in vineyards

Akihiro Baba¹, Erina Ohno¹, Tatsuya Hojo¹, Ryuichi Saguchi¹, Takeshi KIinsho¹

¹Specialty Chemicals Research Center, Shin-Etsu Chemical Co., Ltd., Niigata, Japan

MDPI

Joint Meeting of the IOBC/WPRS Working Groups "Pheromones and other semiochemicals in integrated production" & "Integrated Protection of Fruit Crops". Lisbon, 20-25 January 2019

Revieu

aerosol devices

Sex Pheromone Aerosol Devices for Mating Disruption: Challenges for a Brighter Future

Giovanni Benelli ¹, Andrea Lucchi ^{1,*}, Donald Thomson ² and Claudio Ioriatti ³

- ¹ Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; giovanni.benelli@unipi.it
- ² Pacific Biocontrol Corporation, 14615 NE 13th Court Suite A Vancouver, WA 98685, USA; dthomso123@mac.com
- ³ Technological Transfer Centre and Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige (TN), Italy; claudio.ioriatti@fmach.it
- * Correspondence: andrea.lucchi@unipi.it; Tel.: +39-050-221-6119

Received: 22 July 2019; Accepted: 12 September 2019; Published: 20 September 2019

ACKNOWLEGEMENTS

- ATEVA (Francisco Mata, António Mau, João Maria Correia, Filipe Perdiz, Hugo Pardal, André Pilirito, Andreia Ribeiro)
- Farmers (João Correia, Miguel Feijão, Nuno Bicó)
- ISA team (Vera Zina, André Garcia, Mauricio Bigolin)
- BIOSANI and SHIN-ETSU

Funding:

- KKL-JNF Israel
- Project "Grupo Operacional IntenSusVITI, Intensificação sustentável da vitivinicultura através da poda mecânica, PDR2020-1.0.1-FEADER-03200, Parceria nº 82 / Iniciativa nº 164"
- FCT: UID/AGR/00239/2013, UID/AGR/04129/2013

THANK YOU FOR YOUR ATTENTION

