
Citation: Alibabaei, K.; Assunção, E.;

Gaspar, P.D.; Soares, V.N.G.J.;

Caldeira, J.M.L.P. Real-Time

Detection of Vine Trunk for Robot

Localization Using Deep Learning

Models Developed for Edge TPU

Devices. Future Internet 2021, 14, 199.

https://doi.org/

10.3390/fi14070199

Academic Editors: Spyros

Panagiotakis, Michael Sfakiotakis

and Ioannis N. Daliakopoulos

Received: 1 June 2022

Accepted: 28 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Real-Time Detection of Vine Trunk for Robot Localization
Using Deep Learning Models Developed for Edge TPU Devices
Khadijeh Alibabaei 1,2,* , Eduardo Assunção 1,2 , Pedro D. Gaspar 1,2 , Vasco N. G. J. Soares 3,4,*
and João M. L. P. Caldeira 3,4

1 Department of Electromechanical Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal;
eduardo.assuncao@ubi.pt (E.A.); dinis@ubi.pt (P.D.G.)

2 Centre for Mechanical and Aerospace Science and Technologies (C-MAST), University of Beira Interior,
6201-001 Covilhã, Portugal

3 Polytechnic Institute of Castelo Branco, 6000-084 Castelo Branco, Portugal; jcaldeira@ipcb.pt (J.M.L.P.C.)
4 Instituto de Telecomunicações, 6201-001 Covilhã, Portugal
* Correspondence: k.alibabaei@ubi.pt (K.A.); vasco.g.soares@ipcb.pt (V.N.G.J.S.)

Abstract: The concept of the Internet of Things (IoT) in agriculture is associated with the use of
high-tech devices such as robots and sensors that are interconnected to assess or monitor conditions
on a particular plot of land and then deploy the various factors of production such as seeds, fertilizer,
water, etc., accordingly. Vine trunk detection can help create an accurate map of the vineyard that the
agricultural robot can rely on to safely navigate and perform a variety of agricultural tasks such as
harvesting, pruning, etc. In this work, the state-of-the-art single-shot multibox detector (SSD) with
MobileDet Edge TPU and MobileNet Edge TPU models as the backbone was used to detect the tree
trunks in the vineyard. Compared to the SSD with MobileNet-V1, MobileNet-V2, and MobileDet as
backbone, the SSD with MobileNet Edge TPU was more accurate in inference on the Raspberrypi,
with almost the same inference time on the TPU. The SSD with MobileDet Edge TPU achieved the
second-best accurate model. Additionally, this work examines the effects of some features, including
the size of the input model, the quantity of training data, and the diversity of the training dataset.
Increasing the size of the input model and the training dataset increased the performance of the
model.

Keywords: agriculture; deep learning; IOT; robot; trunk detection

1. Introduction

Today, about half of the EU territory is arable land, and agriculture remains the main
economic activity in most rural areas. However, agriculture has environmental impacts,
such as air pollution and the release of greenhouse gases that contribute to climate change,
water consumption, waste production, erosion and soil degradation, resource pollution and
its impacts on populations, communities, and ecosystem services, fertilizer use, resource
pollution, ecosystem acidification, and more [1–3].

Precision agriculture is an agricultural management system based on the spatial and
temporal variability of the unit of production, which allows for a more rational exploration
of production systems, leading to optimization of input use, increased profitability, and
sustainability, and minimization of environmental impact [4–6]. Precision agriculture
enables small, medium, and large producers to manage their land by using inputs at the
right time, in the right place, and in the right quantity, thereby increasing productivity and
sustainability [4–7].

The Internet of Things (IoT) is a global network of physical items with sensors and
actuators that can be controlled and identified remotely and linked to the internet in real-
time to gather and transmit data [8]. Nowadays, IoT is a part of precision agriculture. The
IoT is used in agriculture to monitor animal production and behavior, crop development,

Future Internet 2021, 14, 199. https://doi.org/10.3390/fi14070199 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14070199
https://doi.org/10.3390/fi14070199
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-2319-8211
https://orcid.org/0000-0001-6027-7763
https://orcid.org/0000-0003-1691-1709
https://orcid.org/0000-0002-8057-5474
https://orcid.org/0000-0001-5830-3790
https://doi.org/10.3390/fi14070199
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14070199?type=check_update&version=1


Future Internet 2021, 14, 199 2 of 17

food quality improvement, and food processing; monitor specific agricultural conditions
such as weather and environmental conditions, presence of pests, weeds, and diseases;
control complex and remote agricultural operations; and perform processing operations
using actuators and robotics [8].

An intelligent operating system for information and decision support is needed that
advocates a sensing system for various indicators of agriculture that allows decision-
making, and optimizes agricultural management, reducing its environmental liability.
By using machine learning for the IoT, future trends can be predicted in real-time and
intelligence can be increased by analyzing vast amounts of image, video, and audio data
collected from IoT devices [9]. There are several research papers that use machine learning
to automate agricultural tasks [10,11].

Viticulture shares some of the environmental problems of other crops and among
the research, there are some that focus on the automation of viticulture. In Kerkech et
al. [12], the SegNet model was used to detect grapevine diseases in RGB and infrared
images. The dataset was acquired with a UAV device. The model trained with RGB images
performed better than the model trained with infrared images. In Silver and Mango [13],
five Convolutional Neural networks (CNN) were trained with different inputs to estimate
grape yield from RGB images taken with a Samsung Galaxy S3 camera in a vineyard on
harvest day. The best-performing model achieved an MAE % of 11.79. In Ghiani et al. [14],
the Mask R-CNN with ResNet101 as a backbone was trained for detecting grape branches
on the tree. The model achieved an mAP of 92.78%. Milella et al. [15] have presented
a system that uses an RGB-D sensor on board an agricultural vehicle to automatically
estimate crop volume and detect grapes in vineyards. The DL model was integrated with
mathematical models in Majeed et al. [16] to detect cordons in grape canopies and calculate
their trajectories. Deep learning models such as SegNet with VGG and AlexNet backbones
and Fully Convolutional Neural Network (FCN) were trained to segment the cordons in
the images. The FCN with the VGG16 backbone outperformed the other networks.

In many real-world applications, detection tasks must be performed in a timely man-
ner on computationally limited devices, such as mobile devices and edge devices. It is
challenging to find models that provide the right trade-off between accuracy and temporal
inference. MobileNet [17] was developed in 2017 to address this challenge. MobileNet is a
lightweight deep neural network architecture designed for low-computation devices and
embedded vision applications. Since then, various lightweight models such as MobileNet-
V1 [17], MobileNet-V2 [18], MobileNet-V3 [19], and MobileDet [20] have been developed.
In addition to the architectural designed for edge devices, an application-specific integrated
circuit (ASIC) called the Tensor Processing Unit (TPU) has been developed by Google
as an Artificial Intelligence (AI) accelerator for neural networks. For low-power devices,
such as IoT edge devices, it provides high-performance inference for Machine Learning
(ML) and accelerates ML inference on these devices. For example, advanced mobile image
processing models such as MobileNet-V2 can run at approximately 400 frames per second
with minimal power consumption [21].

The Single Shot Multibox Detector (SSD) [22] is designed for real-time object detection.
The SSD is a state-of-the-art single-shot detection method that speeds up the process of
detecting the target object in the images. The SSD design is based on a classification model
such as the MobileNet architecture without fully connected layers called the backbone. To
detect objects in the images, additional convolutional layers are added to the backbone.
In Aguiar et al. [23], SSD were trained using MobileNet-V1 and the Inception model as
a backbone to detect mid- and early-stage grapes. To test the temporal accuracy of the
model, the models were transmitted to the TPU Edge device. The SSD with MobileNet-V1
outperformed the SSD with Inception model in terms of accuracy and time inference on
the Edge TPU device.

Robotics can be used in agriculture to enrich fruit harvesting, weeding, pruning,
plowing, irrigation, monitoring, plowing, spraying, and sheep shearing. Agricultural land
has a very complex environment and one of the challenges of using robots in agriculture is



Future Internet 2021, 14, 199 3 of 17

navigating the robots in this complex environment. Aghi et al. [24] developed a low-cost,
energy-efficient local motion planner based on RGB-D images for autonomous navigation
of robots in vineyards. The disparity map and its depth representation was employed to
create proportional control for the robot platform. In case the first algorithm fails, a deep
learning algorithm was used to take over the control of the machine. In Pinto de Aguiar et
al. [25], SSD MobileNet-V1 with different hyperparameters, SSD MobileNet-V2, Pooling
Pyramid Network (PPN) MobileNet-V1, SSDLite MobileNet-V2 , SSD Inception-V2, Tiny
YOLO-V3 were trained to detect the trunk of vines in two vineyards in Portugal. Vine
trunk detection can help create an accurate map of the vineyard. The trained models
were transferred to two Edge devices, including Google’s USB Accelerator and NVIDIA’s
Jetson Nano. Google’s USB Accelerator outperformed the Jetson Nano in terms of time
inference. Aguiar et al. [26] trained the SSD model using MobileNet-V1 and MobileNet-V2
as backbones to detect the trunk in a vine. The model was deployed on an edge device
(Raspberry Pi with Google’s USB Accelerator) in order to investigate accuracy and time
inference.

SSD with MobileDet Edge TPU [20] and MobileNet Edge TPU [19] are state-of-the-art
detection algorithms designed specifically for use on Edge TPU devices. They were more
efficient on Edge TPU devices in terms of accuracy or inference time for the specific dataset
used in [19,20] than models not developed for Edge TPU devices. In this work, SSD with
MobileDet Edge TPU and Mobilnet Edge TPU as backbone were used to detect the trunk
of the vine. The performance of these models was compared with MobileNet-V1 and
MobileNet-V2 to investigate the performance of these models on the agriculture dataset.

The main contributions of this study to the problem of automatic trunk detection in
vineyards are presented below:

• Using the new state-of-the-art MobileDet Edge TPU and MobileNet edge TPU as the
backbone of the state-of-the-art SSD model to detect trunk of vines.

• Deployment of the models in real-time on the Raspberrypi with TPU.
• Comparison of the performance of models on the VineSet dataset with previously

used models not designed for TPU.
• Investigation of the influence of the size of the input of the model on the performance

of the object detection models.
• Investigation of the influence of the size of the training dataset on the performance of

the object recognition models.
• Examining the effect of training set diversity on the performance of object detection

models.
• Investigating the impact of having thermal images in the training dataset.
• Investigating the impact of augmentation of the dataset before splitting it into training

and test sets.
• Analysis of the detection results of the models.

The rest of this paper is structured as follows. The dataset used, an explanation of
the SSD model, the structure of the backbones used in this work, as well as the hardware
used for model training and inference, are all included in Section 2. The results of the
proposed model when applied to the VineSet dataset are shown in Section 3 along with
the corresponding analysis, characterization, and discussion. The summary of the work is
included in Section 4.

2. Materials and Methods
2.1. Dataset

The VineSet dataset from [26] was used for this work. Videos were captured from
four different vineyards using a robot with a frontal stereo RGB camera and a frontal
thermal camera [26]. Images were then extracted from the videos, resulting in a total of
952 vineyard images. The Vineset dataset contains a wide variety of data. The VineSet
consists of images taken at different times of the year to capture the different characteristics
of vineyards resulting from the temporal offset. In addition, it shows images of vineyards



Future Internet 2021, 14, 199 4 of 17

with and without vegetation and with different brightness levels. Finally, thermal images
of vineyards are added to the dataset, introducing the concept of temperature, which can
improve the learning process. A sample of the variety of images in the VineSet is shown in
Figure 1.

Figure 1. An example of the variety of images in the database.

In the next step, the images were manually labeled in the publicly available Pascal
format VOC.

To increase the diversity and robustness of the VineSet, the augmentation methods
were used in [26] and the images were expanded to 9481 images. For the following two
reasons, the original data were used without augmentation:

• The first and most important point was that the dataset was augmented before splitting
the data into train and test. When performing the splits, the same image could appear
in different splits with small changes in angle or brightness, which would have made
the validation and testing step less effective (see Subsection 3.4).

• Second, our computational power was limited. Training the DL models requires a
system with very high computational power (GPU) and memory. The more input
data, the more training time and the more memory required.

2.2. SSD object detection model

SSD consists of two components, a backbone model and an SSD head. The backbone
is a classification model like the VGG-16 architecture without fully connected layers [22]. It
is used to extract feature maps from the input image while preserving the spatial structure
of the image. The head is a set of additional convolutional layers added to the backbone
instead of the original fully connected layers [22]. The convolutional layers in the head
are gradually reduced in size. In this way, features can be extracted at multiple scales, and
the size of the input for each successive layer can be progressively reduced [22]. Figure 2
shows the SSD architecture with VGG as backbone.



Future Internet 2021, 14, 199 5 of 17

Figure 2. SSD architecture.

Instead of using a sliding window, SSD splits the image using a grid and lets each grid
cell be responsible for detecting objects in that area of the image. Each grid cell is capable
of outputting the position and type of the object it contains. The anchor box and receptive
field are designed to detect multiple objects or multiple objects of different shapes in a grid
cell [22]. Using a 3 × 3 convolutional layer on the output of multiple layers, each grid cell
(location) is assigned multiple bounding boxes (usually four or six boxes). These bounding
boxes have different sizes and aspect ratios to cover objects of different sizes. For each of
the bounding boxes, scores are calculated for each class, including an additional class for no
object and 4 offsets, relative to the original shape of the default bounding box (see Figure 3).
Essentially, the anchor box with the highest degree of overlap with an object is responsible
for predicting the class and location of that object. The last layer is the non-maximum
suppression layer to avoid detecting an object several times.

Figure 3. 8 × 8 Feature Map with 4 default boxes at position (3, 3).For each of the boxes, four offsets
and class values are predicted for p classes.

The SSD model is faster than the previous state of the art for single-stage detectors
(YOLO) [27] and as accurate as Faster RCNN [22].

2.3. SSD backbones

MobileNets are a tangled class of neural networks developed by Google researchers
in 2017 [17]. These models are considered very useful for implementation on mobile and
embedded devices. MobileNet uses depthwise separable convolutions. It significantly
reduces the number of parameters compared to a network with regular convolutions
with the same depth in the nets [17]. The main difference between normal convolutions
and depth-wise convolutions is that in regular convolutions, the convolution operation
is applied to all input channels, while in depth-wise convolutions, each channel remains
separate [17] (see Figure 4). In MobileNet-V1, after applying a filter to each channel, a
1 × 1 convolutional layer is applied to combine the results of the depthwise convolution
operation. Because depth-separable convolution requires less computation than regular
convolution, MobileNets are faster and consume less power, so they can run on mobile and
embedded devices without powerful graphics processors.



Future Internet 2021, 14, 199 6 of 17

Figure 4. (A) shows a normal convolution with 8 × 8 × 1 output and (B) shows a depthwise convolu-
tion with three kernels to get an image with 8 × 8 × 3 image.

Due to the small size, there is a trade-off in accuracy compared to larger, fully con-
volutional architectures. MobileNet-V2 [18] was designed to improve the accuracy of the
MobileNet-V1. In MobileNet-V2, there are two types of blocks. One is a residual block
with a stride of one and the other is a block with a stride of two for reduction (see Figure
5). Adding residual blocks allows the network to access previous feature maps that were
not changed in the convolutional block. Additionally, a linear layer was used in the last
layer of the residual block to prevent nonlinearities from destroying too much information.
The other difference with MobileNet-V1 is that a low-cost 1 × 1 convolutional layer was
used at the beginning of the blocks to reduce the number of input channels. This way, the
following 3 × 3 convolutional layer has much less parameters.

Depthwise

conv

Add

Relu6

Relu6

conv Linear

Input

Stride 1 Block:

Depthwise

conv Relu6

Relu6, stride=2

conv Relu6

Input

Stride 2 Block:

Figure 5. Blocks used in MobileNet-V2.

MobileNet Edge TPU [28] was developed for the Edge TPU in the Pixel 4, which is
similar in architecture to the Edge TPU in the Coral product, but adapted to the require-
ments of Pixel 4’s main camera functions. To optimize the model accuracy and latency of
the Edge TPU, the Neural Architecture Search (NAS) [29] and NetAdapt [30] algorithms
were used to search for the model structure. NAS is a process that searches among all
possible combinations of submodules that can be repeatedly assembled to obtain the entire



Future Internet 2021, 14, 199 7 of 17

model with the best possible accuracy. The NetAdapt algorithm works with the number
of filters in each convolutional layer. To find the best structure for MobileNet Edge TPU
in terms of accuracy and latency, the NAS and NetAdapt algorithms were used side by
side. The result is a structure that has lower latency or higher accuracy at fixed latency than
existing mobile models such as MobileNet-V2 and the minimalistic MobileNet-V3 [28].

MobileDet [20] is a new architecture for image classification models designed specifi-
cally for use on mobile accelerators such as DSP, Edge TPU, and so on. In MobileNet Edge
TPU, the NAS algorithm was used to find the best architecture for the classification model,
but in [20], a new backbone search space is proposed based on full convolutions for the
SSD object detection model. Figure 6 shows the three blocks used to build the MobileDet
model.

DConv

Conv 1

Conv

Input

Block 1: IBN Block 2: FIB

Conv

Conv

Input

Conv

Conv 1

Conv

Input

Block 3: Tucker

Figure 6. Blocks used in MobileDet.

2.4. Hardware used

Training was performed on a desktop computer PC with an Intel(R) Core(TM) i7-4790
CPU @ 3.60GHz, 16 GB RAM, and an NVIDIA RTX 2080 graphics card with 8 GB memory.

The Raspberry Pi 4 Model B is the latest addition to the popular Raspberry Pi line
of single-board computers. Compared to the previous generation Raspberry Pi 3 Model
B, it offers revolutionary advances in CPU speed, multimedia capabilities, memory, and
connectivity. In this study, the model was inferred to Edge devices with a Raspberry Pi 4
Model B with 8 GB of memory.

Coral USB Accelerator is a USB add-on module that provides accelerated ML inference
for existing systems. Coral USB Accelerator was used on the Raspberry Pi to investigate the
performance of the model designed for Edge TPU devices. Figure 7 shows the Raspberry
Pi 4 and the Coral USB Accelerator.

Figure 7. From left to right: Raspberrypi https://www.raspberrypi.com/, accessed on 15 November
2021), and Google coral USB Accelerator (https://coral.ai/, accessed on 8 November 2021).

https://www.raspberrypi.com/
https://coral.ai/


Future Internet 2021, 14, 199 8 of 17

2.5. Metric for evaluation

The SSD model for object detection was evaluated using mean average accuracy
(mAP). The mAP calculates a score by comparing the ground truth bounding box to the
detected box. The mAP score is determined by precision (P), recall (R), and intersection
over union (IoU). Precision is calculated using Equation (1) and is the proportion of true
detection by the model (TP) to total positive detection (true positives and false positives
(FP).

P =
TP

TP + FP
. (1)

Recall measures the proportion of accurate positive predictions among all possible
positive and false negative (FN) predictions, is calculated by Equation(2).

R =
TP

TP + FN
. (2)

The IoU calculates the overlap between the ground truth bounding box and the boxes
predicted by the model. It is a number in the range between zero and one. The number 1
means that the ground truth box completely matches the predicted box and zero means
that there is no overlap between the two boxes, and is calculated according to Equation (3).

IoU =
area of overlap

area of union
. (3)

The precision–recall curve is calculated by the trade-off between precision and recall
values for different IoU thresholds. The average precision is defined by the area under
the precision–recall curve, and the mAP is the average over the average precision for each
predicted box.

2.6. Training configuration

Building a DL model from scratch requires a large amount of data and computational
resources. One way to get around this drawback is to use transfer learning and fine-tuning
[11,26,31]. In transfer learning, the model is trained with a large dataset such as ImageNet or
COCO, and then the same model is reused and re-trained for a similar task. The TensorFlow
Model Garden is a repository of a number of different implementations of state-of-the-art
models and modeling solutions for TensorFlow users [32]. The Object Detection directory
of the Tensorflow Garden contains code implementations and pre-trained models from
published research papers. These models have been trained on the COCO dataset and can
be used for transfer learning and fine-tuning. In this work, the pre-trained models in the
Tensorflow Garden were used for fine-tuning.

Normally, the default input of the models in the object detection directory is less
than or equal to 320 × 320. In this work, the model input of the model was changed to
640 × 480 to avoid degradation of the image and losing the information within the images.
In Subsection 3.3, it is investigated that the size of the input makes a big difference in terms
of the accuracy of the model and the time inference. Since the size of the input of the images
was not mentioned in the [26], the SSD model was trained with mobiletV1 and mobiletV2
to compare the performance of the Edge TPU models.

Due to our limited computational power, the batch size of four was the best we could
use to train the model. The models were trained with a maximum of 35000 steps. The
quantization-aware method was used. The quantization-aware method simulates low
precision behavior in the forward pass while the backward pass remains the same [33]. The
learning rate for each model was set to a range of 0.01 to 0.0455 and the IoU threshold was
set to a range of 0.40 to 0.55 to obtain the best performance of the model for the dataset.



Future Internet 2021, 14, 199 9 of 17

3. Results and discussions
3.1. Performance of the models during training

Figures 8 and 9 demonstrate the losses and mAP, respectively, of the models during
training. As can be seen in Figures 8, the losses of MobileNet Edge TPU and MobileDet
Edge TPU are more stable than those of the other two models. Furthermore, MobileDet
Edge TPU performs better in terms of mAP on the test set at PC, although it has a larger
overall loss than the other models at the end of training.

5000 10000 15000 20000 25000 30000
Steps

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Lo
ss

5000 10000 15000 20000 25000 30000
Steps

0.5

0.6

0.7

0.8

0.9

Lo
ss

5000 10000 15000 20000 25000 30000 35000
Steps

0.6

0.7

0.8

0.9

1.0

1.1

Lo
ss

5000 10000 15000 20000 25000 30000 35000
Steps

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Lo
ss

Figure 8. Loss of models during training. Top left: MobileNet-V1, top right: MobileNet-V2, bottom
left: MobileNet Edge TPU and bottom right: MobileDet Edge TPU.

Since the mAP improvement of MobileNet-V1 and MobileNet-V2 ended at about 25k
steps (Figure 9), their training was terminated at 30k steps, whereas the other models were
trained for 35k steps.



Future Internet 2021, 14, 199 10 of 17

5000 10000 15000 20000 25000 30000
Steps

55

60

65

70

75

80

85

m
AP

%

5000 10000 15000 20000 25000 30000
Steps

50

55

60

65

70

75

80

85

90

m
AP

%

5000 10000 15000 20000 25000 30000 35000
Steps

40

50

60

70

80

m
AP

%

5000 10000 15000 20000 25000 30000 35000
Steps

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

m
AP

%

Figure 9. mAP of models during training (threshold=50). Top left: MobileNet-V1, top right:
MobileNet-V2, bottom left: MobileNet Edge TPU and bottom right: MobileDet Edge TPU.

Table 1 shows the training time (s) of the models per step. The training time of the
models developed for the Edge TPU was shorter than that of the other models, which is
due to the fact that the number of parameters of these models is less than that of the other
two models. Although the SSD with MobileNet Edge TPU and MobileDet Edge TPU have
fewer parameters, their performance is superior to the other two types (see Figure 9).

Table 1. The total number of parameters and the training duration for one step.

Backbones MobileNet-V1 MobileNet-V2 MobileNet MobileDet
Edge TPU Edge TPU

Training time (s) 0.23 0.30 0.19 0.19
No. Parameters (million) 5.49 4.57 2.99 3.25

3.2. Comparison of the performance of the models

An illustration of detection using SSD MobileDet Edge TPU is shown in Figure 10.
The detection using the model is shown on the left, while the ground truth is shown on the
right. As we can see, the model was able to identify a tree trunk in the image, despite its
distance from the camera and its modest size.

Figure 10. Detection results using SSD MobileDet Edge TPU.



Future Internet 2021, 14, 199 11 of 17

Table 2 shows the performance of the SSD model with different models as backbones
on the GPU and the Raspberry Pi. From the table, it can be seen that the best performance
in terms of accuracy on PC was achieved by the SSD model with MobileDet Edge TPU
and on the RaspberryPi with MobileNet Edge TPU. The degradation in accuracy when
switching from a PC to a Raspberry Pi was less with the MobileNet Edge TPU than
with the other models. Although the SSD with MobileNet-V2 model and the MobileDet
model performed better than SSD with MobileNet Edge TPU on PC, the accuracy on the
RaspberryPi decreases. MobileNet-V1 achieved the worst results on PC and the Raspberry
Pi.

It is interesting to note that for all models, the accuracy of the model running on the
Raspberry Pi with TPU is superior to the accuracy of the model running on the Raspberry
Pi without TPU.

On the Raspberry Pi with TPU, the models all have virtually the same inference time,
with the SSD achieving the fastest inference time with MobileNet-V1 as the backbone.

The inference time for the models created for the TPU is longer than MobileNet-V1
and V2 on the RaspberryPi without TPU, but it is the same on the RaspberryPi with TPU.

Table 2. Performance of the models in terms of accuracy and inference time (ms).

Backbone
mAP% Inference time (ms)

PC RaspberryPi RaspberryPi
GPU CPU TPU CPU TPU

MobileDet Edge TPU 89 84.4 84.6 1048.277 47.75
MobileNet Edge TPU 86.7 84.8 86.6 1235.73 47.79

MobileNet-V1 84 79.9 81.3 861.4 45.73
MobileNet-V2 88 82.8 83.2 773.717 47.969

Figure 11 shows the mean average accuracy versus latency of the trained models
on the RaspberryPi without and with TPU. As can be seen, the models created for the
TPU perform better on the TPU, however the inference time is longer than MobileNet-V1.
Depending on the application, the model should be chosen because there is a trade-off
between accuracy and latency.

Figure 11. Comparison of mean average precision vs. latency for mobile models.

3.3. Effect of some parameters on the performance of the model

To investigate the effect of input image size on the performance of the model, the SSD
was trained using MobileDet as the backbone with the default input size, i.e., 320 × 320.
The performance of the model is shown in table 3. As can be seen from the table, the
accuracy of the model decreases by 12%, and the time for inference decreases by almost
half. Thus, there is a trade-off between the input size of the model, the accuracy and time
for inference. A model with a smaller input size is less accurate, but runs faster.

In the following experiment, 20% of the training dataset was used for training to
investigate the effect of dataset size on model performance. The SSD with MobileDet as the
backbone was trained on this smaller dataset with the same hyperparameters as the model



Future Internet 2021, 14, 199 12 of 17

with the best performance. As can be seen in Table 3, the performance of the model drops
by 8%.

The thermal images in the training dataset were removed from the training to examine
the effect of having thermal images in the training set. The performance of the model
dropped by 2%.

Table 3. Performance of the SSD MobileDet under different parameters.

Backbone
mAP% Inference time (ms)

PC RaspberryPi RaspberryPi
GPU CPU TPU CPU TPU

MobileDet Edge TPU (640 × 480) 89 84.4 84.6 456.98 47.75
MobileDet Edge TPU (320 × 320) 77 67.4 67 1235.73 27
MobileDet Edge TPU (640 × 480) 81 77 77.5 456.98 47.75

(trained on 20% of images)
MobileDet Edge TPU (640 × 480) 87 82.6 83 456.98 47.75

(without thermal images in training set)

The images of trunks without leaves were selected as the training set (304 images) for
the next experiment, and the images of trunks with leaves were selected as the validation
set (89 images). Figure 12 shows the performance of the model during the training of the
model on the validation set. The model was trained in 17500 steps with an mAP of less
than 0.05, while the model trained with the mixed images (with and without leaves) almost
reached an mAP of 0.8 in the same step (see Figure 9). Therefore, the training set must
fully reflect the real-world conditions, otherwise, the model will not be able to detect the
desired object in the unseen images, which contain features not seen during training. It
is important to note that the model could not detect trunks with leaves when trained on
images without leaves, however adding some images with leaves (89 images) enhanced
the performance of the model. Consequently, updating and re-training the model with new
data obtained in the field is an important step in training and using the DL algorithms.

4000 6000 8000 10000 12000 14000 16000
Steps

1

2

3

4

5

m
AP

%

Figure 12. mAP of the SSD MobileDet model, trained on the images without leaves and tested on the
images with leaves.

3.4. Effect of data augmentation before splitting data into training and test set

As mentioned in 2.1, enhancing images prior to splitting the data into training and
test data results in certain images to appear in different partitions with slight variations in
brightness or angle, which reduces the effectiveness of validation and testing. To investigate
this further, a random image was selected and image enhancements such as rotation (15
and 45 degrees) and flipping of this image were added to the training dataset. Figure 13
shows the result of the model with and without adding an enhanced version of the image
and ground truth. As can be seen in Figure 13, the trained model with enhanced copies
of the image as part of the training dataset produces identical results to the ground truth,



Future Internet 2021, 14, 199 13 of 17

but the model can identify even more trunks on the image when the enhanced versions are
not used in the training. Consequently, either the process of data augmentation should be
performed after splitting the dataset into a training and a test dataset, or care should be
taken to ensure that an enhanced version of the image from the test dataset is not used in
the training dataset.

Figure 13. Detection results of the trained models with and without enhanced images in the training
dataset. Top image: ground truth, bottom left: Model trained with enhanced images, bottom right:
Model trained without enhanced images.

3.5. Analysis of the trunk detection results

In analyzing the model results in detecting tree trunks, we found some cases where a
tree trunk is not marked in the ground truth, but the model can still find it in the images.
Figure 14 shows an example of this case.



Future Internet 2021, 14, 199 14 of 17

Figure 14. The left images are the detection results of the model, and the left side is the ground truth.
The model has found the trunks in the image that are not marked as tree trunks.

When the trunks are close together, as is the case in some images, the model cannot
detect both of them. This situation is illustrated in Figure 15. Since the overlap occurs while
the trunks are far from the camera and the robots are moving through the field, the overlap
of the trunks in the close-up image is minimal and therefore does not pose a problem for
the robot application. However, more photos with overlapping trunks should be added to
the training dataset, and the model should be re-trained to reduce the error in detecting the
overlapping trunks.

Figure 15. Two trunks are close together and the model cannot detect both.

When the surroundings are extremely complicated and the trunks are far from the
camera, the model also has difficulty accurately identifying all the trunks in the image.
Examples of this case are shown in Figure 16. As can be seen, the environment is quite
complex because the trunks are far from the camera and there are plants in the middle of
the row, making it difficult for the model to identify all the stems in the image.



Future Internet 2021, 14, 199 15 of 17

Figure 16. The result of the model in the complex environment.

4. Conclusions

In this study, the two state-of-the-art object detection models for use on TPU devices
were trained to detect the tree trunk in a vineyard. The best performance on PC in terms of
accuracy was achieved by the SSD with MobileDet Edge TPU model compared to the SSD
with MobileNet Edge TPU, MobileNet-V1, and MobileNet-V2. However, the degradation
of the accuracy of MobileNet Edge TPU was less when the model was transferred to the
RaspberryPi with TPU and performed the best on this device. Therefore, the accuracy of
the model should be measured on the edge devices to ensure the performance of the model
on these devices.

This work also examined the relationship between input size and accuracy and in-
ference time on edge devices. By changing the model input from 320 × 320 to 640 × 480,
the accuracy and inference time increased simultaneously. Therefore, the model input size
should be considered as a trade-off factor for training the model.

In addition, this work investigated how the size of the training dataset and the number
of thermal images in the training dataset affect the detection results. When the size of the
training dataset was reduced to 20%, the performance of the model decreased by 8%, and
when thermal images were excluded from the training set, the performance of the model
decreased by 2%.

The analysis of the detection of the model on the test set shows that the wrong labeling,
the complex environment, the fused trunk, or the trunk far away from the camera can lead
to false detection of the model.

The limitation of DL models is that the output of the trained model depends on the
training dataset. According to this work, a model trained on images without leaves is often
unable to detect a tree trunk with leaves. To avoid this drawback, the training model data
should be collected at different seasons and under real conditions. When using DL models,
updating and re-training the model with new data collected in the field should also be
considered an important step. The fact that the models from DL require a large amount of
training data is another drawback that makes it difficult to use these models in agriculture.
However, sharing the dataset in research projects such as VineSet helps to advance the
research field.

Author Contributions: K.A.: investigation; methodology; writing—review, software. E.A.: method-
ology; software. P.D.G.: supervision, writing review, and project administration and Funding
acquisition. V.N.G.J.S.: funding acquisition, reviewing and editing. J.M.L.P.C.: funding acquisition,
reviewing and editing. All authors have read and agreed to the published version of the manuscript.



Future Internet 2021, 14, 199 16 of 17

Funding: This research received no external funding.

Data Availability Statement: Not Applicable, the study does not report any data.

Acknowledgments: K. A. and P. D. G. acknowledge the R&D Project BioDAgro – Sistema operacional
inteligente de informação e suporte á decisão em AgroBiodiversidade, project PD20-00011, promoted
by Fundação La Caixa and Fundação para a Ciência e a Tecnologia, taking place at the C-MAST -
Centre for Mechanical and Aerospace Sciences and Technology, Department of Electromechanical
Engineering of the University of Beira Interior, Covilhã, Portugal. P.D.G. and E. A acknowledges
the PrunusBot project—Autonomous controlled spraying aerial robotic system and fruit production
forecast, Operation No. PDR2020-101-031358 (leader), Consortium No. 340, Initiative No. 140,
promoted by PDR2020 and co-financed by the EAFRD and the European Union under the Portugal
2020 program. P.D.G. also acknowledges Fundação para a Ciência e a Tecnologia (FCT—MCTES) for
its financial support via project UIDB/00151/2020 (C-MAST). V.N.G.J.S. and J.M.L.P.C. acknowledge
that this work is funded by FCT/MCTES through national funds and, when applicable, co-funded
EU funds under project UIDB/EEA/50008/2020.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Clark, M.; Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input

efficiency, and food choice. Environ. Res. Lett. 2017, 12, 064016, http://doi.org/10.1088/1748-9326/aa6cd5.
2. Baiano, A. An Overview on Sustainability in the Wine Production Chain. Beverages 2021, 7, 15.

http://doi.org/10.3390/beverages7010015.
3. Rodrigo-Comino, J. Five decades of soil erosion research in “terroir”. The State-of-the-Art. Earth-Sci. Rev. 2018, 179, 436–447,

https://doi.org/10.1016/j.earscirev.2018.02.014.
4. Jastrzębska, M.; Kostrzewska, M.; Saeid, A. Chapter 2 - Sustainable agriculture: A challenge for the future. In Smart Agro-

chemicals for Sustainable Agriculture; Chojnacka, K., Saeid, A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 29–56,
https://doi.org/10.1016/B978-0-12-817036-6.00002-9.

5. Hopmans, J.W.; Qureshi, A.; Kisekka, I.; Munns, R.; Grattan, S.; Rengasamy, P.; Ben-Gal, A.; Assouline, S.; Javaux, M.; Min-
has, P.; et al. Chapter One—Critical knowledge gaps and research priorities in global soil salinity. In Advances in Agronomy;
Academic Press: Cambridge, MA, USA, 2021; Volume 169, pp. 1–191, https://doi.org/10.1016/bs.agron.2021.03.001.

6. Nalla, K.; Pothabathula, S.V.; Kumar, S. Chapter 21—Applications of Computational Methods in Plant Pathology. In Natural
Remedies for Pest, Disease and Weed Control; Egbuna, C., Sawicka, B., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 243–250,
https://doi.org/10.1016/B978-0-12-819304-4.00021-X.

7. Loures, L.; Chamizo, A.; Ferreira, P.; Loures, A.; Castanho, R.; Panagopoulos, T. Assessing the Effectiveness of Precision Agricul-
ture Management Systems in Mediterranean Small Farms. Sustainability 2020, 12, 3765. http://doi.org/10.3390/su12093765.

8. Verdouw, C.; Wolfert, S.; Tekinerdogan, B. Internet of Things in agriculture. CAB Rev. 2016, 11, 1–12,
http://doi.org/10.1079/PAVSNNR201611035.

9. Zantalis, F.; Koulouras, G.; Karabetsos, S.; Kandris, D. A Review of Machine Learning and IoT in Smart Transportation. Future
Internet 2019, 11, 94. http://doi.org/10.3390/fi11040094.

10. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90.
11. Alibabaei, K.; Gaspar, P.D.; Lima, T.M.; Campos, R.M.; Girão, I.; Monteiro, J.; Lopes, C.M. A Review of the Challenges

of Using Deep Learning Algorithms to Support Decision-Making in Agricultural Activities. Remote Sens. 2022, 14, 638.
http://doi.org/10.3390/rs14030638.

12. Kerkech, M.; Hafiane, A.; Canals, R. Vine disease detection in UAV multispectral images using optimized image registration and
deep learning segmentation approach. Comput. Electron. Agric. 2020, 174, 105446, https://doi.org/10.1016/j.compag.2020.105446.

13. Silver, D.L.; Monga, T. In Vino Veritas: Estimating Vineyard Grape Yield from Images Using Deep Learning. In Advances in
Artificial Intelligence; Meurs, M.J., Rudzicz, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 212–224.

14. Ghiani, L.; Sassu, A.; Palumbo, F.; Mercenaro, L.; Gambella, F. In-Field Automatic Detection of Grape Bunches under a Totally
Uncontrolled Environment. Sensors 2021, 21, 3908. http://doi.org/10.3390/s21113908.

15. Milella, A.; Marani, R.; Petitti, A.; Reina, G. In-field high throughput grapevine phenotyping with a consumer-grade depth
camera. Comput. Electron. Agric. 2019, 156, 293–306, https://doi.org/10.1016/j.compag.2018.11.026.

16. Majeed, Y.; Karkee, M.; Zhang, Q.; Fu, L.; Whiting, M.D. Determining grapevine cordon shape for automated green
shoot thinning using semantic segmentation-based deep learning networks. Comput. Electron. Agric. 2020, 171, 105308,
https://doi.org/10.1016/j.compag.2020.105308.

17. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

18. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv
2018, arXiv:1801.04381.



Future Internet 2021, 14, 199 17 of 17

19. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for
MobileNetV3. arXiv 2019, arXiv:cs.CV/1905.02244.

20. Xiong, Y.; Liu, H.; Gupta, S.; Akin, B.; Bender, G.; Wang, Y.; Kindermans, P.J.; Tan, M.; Singh, V.; Chen, B. MobileDets: Searching
for Object Detection Architectures for Mobile Accelerators. arXiv 2021, arXiv:cs.CV/2004.14525.

21. Cloud tensor processing units (tpus). Available online: https://cloud.google.com/tpu/docs/tpus(accessed on 28 June 2022).
22. W. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer

Vision-ECCV 2016; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37.
23. Aguiar, A.S.; Magalhães, S.A.; dos Santos, F.N.; Castro, L.; Pinho, T.; Valente, J.; Martins, R.; Boaventura-Cunha, J. Grape Bunch

Detection at Different Growth Stages Using Deep Learning Quantized Models. Agronomy 2021, 11, 1890.
24. Aghi, D.; Mazzia, V.; Chiaberge, M. Local Motion Planner for Autonomous Navigation in Vineyards with a RGB-D Camera-Based

Algorithm and Deep Learning Synergy. Machines 2020, 8, 27. http://doi.org/10.3390/machines8020027.
25. Pinto de Aguiar, A.S.; Neves dos Santos, F.B.; Feliz dos Santos, L.C.; de Jesus Filipe, V.M.; Miranda de Sousa, A.J. Vineyard

trunk detection using deep learning—An experimental device benchmark. Comput. Electron. Agric. 2020, 175, 105535,
https://doi.org/10.1016/j.compag.2020.105535.

26. Aguiar, A.S.; Monteiro, N.N.; Santos, F.N.D.; Solteiro Pires, E.J.; Silva, D.; Sousa, A.J.; Boaventura-Cunha, J. Bringing
Semantics to the Vineyard: An Approach on Deep Learning-Based Vine Trunk Detection. Agriculture 2021, 11, 131.
http://doi.org/10.3390/agriculture11020131.

27. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525, http://doi.org/10.1109/CVPR.2017.690.

28. Yazdanbakhsh, A.; Seshadri, K.; Akin, B.; Laudon, J.; Narayanaswami, R. An Evaluation of Edge TPU Accelerators for
Convolutional Neural Networks. arXiv 2021, arXiv:cs.LG/2102.10423.

29. Zoph, B.; Le, Q.V. Neural Architecture Search with Reinforcement Learning. arXiv 2016, arXiv:1611.01578.
30. Yang, T.J.; Howard, A.; Chen, B.; Zhang, X.; Go, A.; Sandler, M.; Sze, V.; Adam, H. NetAdapt: Platform-Aware Neural Network

Adaptation for Mobile Applications. arXiv 2018, arXiv:cs.CV/1804.03230.
31. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359.
32. Yu, H.; Chen, C.; Du, X.; Li, Y.; Rashwan, A.; Hou, L.; Jin, P.; Yang, F.; Liu, F.; Kim, J.; Li, J. TensorFlow Model Garden. Available

online: https://github.com/tensorflow/models (accessed on 27 June 2022).
33. Nagel, M.; Fournarakis, M.; Amjad, R.A.; Bondarenko, Y.; van Baalen, M.; Blankevoort, T. A White Paper on Neural Network

Quantization. arXiv 2021, arXiv:2106.08295.

https://cloud.google.com/tpu/docs/tpus
https://github.com/tensorflow/models

	Introduction
	 Materials and Methods 
	Dataset
	SSD object detection model
	SSD backbones
	Hardware used
	Metric for evaluation
	Training configuration

	Results and discussions
	 Performance of the models during training
	Comparison of the performance of the models
	Effect of some parameters on the performance of the model
	Effect of data augmentation before splitting data into training and test set
	Analysis of the trunk detection results

	Conclusions
	References

