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Abstract: Bird damage to fruit crops causes significant monetary losses to farmers annually. The
application of traditional bird repelling methods such as bird cannons and tree netting become
inefficient in the long run, requiring high maintenance and reducing mobility. Due to their versatility,
Unmanned Aerial Vehicles (UAVs) can be beneficial to solve this problem. However, due to their low
battery capacity that equals low flight duration, it is necessary to evolve path planning optimization.
A novel path planning optimization algorithm of UAVs based on Particle Swarm Optimization
(PSO) is presented in this paper. This path planning optimization algorithm aims to manage the
drone’s distance and flight time, applying optimization and randomness techniques to overcome
the disadvantages of the traditional systems. The proposed algorithm’s performance was tested in
three study cases: two of them in simulation to test the variation of each parameter and one in the
field to test the influence on battery management and height influence. All cases were tested in the
three possible situations: same incidence rate, different rates, and different rates with no bird damage
to fruit crops. The field tests were also essential to understand the algorithm’s behavior of the path
planning algorithm in the UAV, showing that there is less efficiency with fewer points of interest, but
this does not correlate with the flight time. In addition, there is no association between the maximum
horizontal speed and the flight time, which means that the function to calculate the total distance for
path planning needs to be adjusted. Thus, the proposed algorithm presents promising results with
an outstanding reduced average error in the total distance for the path planning obtained and low
execution time, being suited for this and other applications.

Keywords: bird damage to fruit crops; unmanned aerial vehicles; path planning; meta-heuristic; path
planning optimization algorithm

1. Introduction

Agriculture is not only a source of food but also a source of vast employment and
rural development. However, the contribution of agriculture to national economies has
decreased over the years, as countries have moved upward to upper-income classes. Still,
26.5% of the world’s total employment is in this sector. Increased productivity contributes
to lowering food prices, which will benefit the consumers, particularly the low income,
since food expenses represent a large share of their total budget. Hence, its development
and growth have always been one of the topmost priority agendas of policymakers [1],
companies, and researchers.

New technologies, such as Unmanned Aerial Vehicles (UAVs), commonly known as
drones, have been increasingly used in agricultural activities. UAVs are unmanned aircrafts
already being applied in agriculture and used to overcome traditional systems’ failures.
Several parameters characterize its types, such as the structure, method to take-off and land,
and the number of motors. The main structure configurations are Horizontal Take-Off and
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Landing, multirotor, helicopter, and Vertical Take-Off and Landing (VTOL), and its basic
architecture consists of a frame, brush-less motors, Electronic Speed Control (ESC) modules,
control board, Inertial Navigation System (INS), and a transmitter/receiver module [2].
Depending on its functions, these may include cargo compartments, actuators, sensors
such as Light Detection and Ranging (LiDAR) modules, and multispectral cameras. The
possibility of systematic data collection, mapping field variability, and better decisions lead
farmers and companies to invest in UAVs for agriculture.

Bird damage to fruit and other horticultural crops is a well-documented agricultural
problem [3,4] due to being costly and persistent to farmers worldwide. Flocks destroy trees
and feed on fruits and grains. In addition to consumption, diseases can appear, leading
to decreased product quality and quantity [5]. With the advancement of technology, new
techniques emerged to reduce the environmental impact. Bird cannons usually use propane
to randomly imitate a loud sound, such as an explosion, consisting of a support, control
system, feeding cylinder, and a cone to disperse the sound, making this heavy, low mobility,
and predictable. These systems are the most popular mechanical, visual, and auditory
methods to scare birds away from crop fields [6]. Another popular method is speakers
which use various species-specific distress signals and predator calls to send a danger alert
to birds in the area. Despite its small size, this method presents low mobility because it
is necessary to move it in order not to become predictable. Alternatives to these active
and mechanical methods are cultural methods such as protecting crops with netting—but
this only works on a small scale and may divert birds to crops with no netting present—or
planting and harvest date manipulation, which is not always possible requiring knowledge
of bird movement [7]. The central region of Portugal’s countryside has good climatic and
edaphic conditions for fruit species production, mainly Prunus fruit, specifically cherry
and peach trees, with Beira Interior being the leading grower of this type of fruit in the
Country [8]. In this area, flocks of birds, such as shown in Figure 1, find in these orchards’
food and shelter, destroying fruits and trees, creating a financial and management problem
since these are intelligent animals that can detect patterns, are highly mobile, and persist
after a food source is discovered [9].
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In the USA, farmers lose tens of millions of dollars each year through direct losses
and often ineffective efforts to deter birds [10], so drones with repelling systems emerge
as solution tools. Wang et al. [11] studied the impact of these technologies using bird
taxidermy and loud distress calls in ravens, starlings, and cockatoos. The results strongly
indicated that the UAV is an effective bird deterrent for the target species and showed
that several of these systems may be needed in larger fields and may need to be operated
frequently if the birds return after short periods. Once it is confirmed that this technology
is a solution to the problem, it is necessary to highlight its flaws to increase its efficiency.
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Thus, creating an unpredictable autonomous algorithm that controls the drone according
to the movement of the birds should be the focus of future works.

As already stated, farmers use different methods to deal with bird damage to fruit
crops. These techniques present the same problems: low mobility, predictability, and high
maintenance, becoming inefficient in the long run. UAVs or drones can fly without pilots’
onboard presence [12] and can be autonomous via an onboard electronic flight controller
and a path map or remote-controlled from the ground. This technology is already widely
used in agriculture in different applications due to its high mobility, task versatility, low
maintenance, and cost, and its advantages fill the disadvantages of traditional systems.
Hence, drones with repelling systems start to emerge as valid solutions against bird damage
to fruit crops. Although these problems have been solved, new ones arise, such as short
flight time. This problem can be worked through flight optimization using path planning
and expanding batteries’ capacity, representing one of the heaviest parts of the UAVs.
Increasing its capacity also increases volume and weight, making the drone heavier and
less efficient, and in most off-the-shelf products, it is not possible to modify them. So, it
is necessary to optimize the path to ensure the most energy-efficient flight accordingly to
the final objective. This paper presents a novel path planning optimization algorithm for
UAVs to help bird damage in agriculture, using metaheuristic optimization techniques and
flight planning based on points of interest to focus the path to the most affected areas and
random waypoints to avoid patterns. Different scenarios are tested in simulation and field,
studying variables such as processing time, number of iterations, and energy consumption.
This study focuses on energy efficiency and flight time optimization, which can be an asset
in autonomous bird repelling UAVs, besides many other applications.

The paper is structured as follows: Section 2 includes the state of the art of autopilots
and ground control stations (GCS), optimization algorithms and UAV path planning
algorithms. Next, Section 3 describes the materials and methods applied and used during
the research. It includes the hardware description, the UAV and GCS, and the base path
planning algorithm. Section 4 describes in detail the novel path planning algorithm. It
includes its global architecture, parameters setting, how is performed the minimization
between Points of Interest, how is performed the maximization of random waypoints, and
how created the pre-planned mission file. Section 5 includes the analysis and discussion of
results of three case studies, two of these simulated and other performed experimentally,
Section 6 discusses the overall results of the novel path planning algorithm and last section,
Section 7, includes general and specific conclusions of the study, showing the advantages
of this novel path planning algorithm and its scalability.

2. State of the Art
2.1. Autopilots and Ground Control Stations

Fully Autonomous Aerial Systems (FAAS) is an emerging workload wherein UAVs
execute dynamic missions defined wholly by software. End users do not support pilot
FAAS, nor do they define preset waypoints. Instead, they provide goals, constraints, and
software that execute missions. Similar to edge-driven video analytics, FAAS processes
images in real-time and leverages Artificial Intelligence (AI) for scene analysis. However,
FAAS also controls aircraft flight, making flight paths dynamic [13]. Semi-autonomous
systems can sense their environment and perform their tasks autonomously, but humans
may also supervise them [14].

Conventional UAVs contain a flight controller system mechanically connected to the
respective cockpit controls to define the aircraft direction, speed, and altitude assisted by
an INS and external sensors. The manual control can be replaced or assisted by autopilot
systems. These are crucial and provide semi-autonomous navigation and assist the remote
piloting of the aircraft when required. Semi-automated piloting is possible using a remote
control. The operator also can use a computer, tablet, or mobile phone to provide Global
Navigation Satellite System (GNSS) waypoints that can be saved in the autopilot to navigate.
Open hardware autopilots provide complete information about the electronic components
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composed and the code running on the system. On the other hand, the information
provided by the closed hardware autopilots depends on the manufacturer’s strategy and
typically is not open to users [15].

Nowadays, some companies produce readily available, reliable, cheaper, and simple-
to-use boards. Each autopilot is different in weight, dimensions, processor, internal sensors,
and interfaces and has its advantages and disadvantages, depending on the application.
After researching the most commercially available open and closed hardware used, it is
possible to infer the following factors [16–39]. One of the most commonly used controllers is
the STM32 processor family, due to the global characteristics of the processors, information,
and run most software such as PX4, an open-source flight control software for drones
and other unmanned vehicles [40], known for its ecosystem and hardware compatibility.
Another processor widely applied is the Raspberry Pi (RPi), with a shield to accommodate
external sensors and additional input and output. This microcomputer typically runs
some versions of Linux and is popular due to being easy to program. The Intel Aero is an
example of closed hardware, Linux base autopilot developed by Intel but was discontinued
in February of 2019 [41]. Regarding the internal sensors, most autopilots have one or
more accelerometers, gyroscopes, magnetometers, and barometers, and for the interfaces
all present Pulse-Width Modulation (PWM) output, RC input, and the most common
communication protocol (Serial Peripheral Interface, Inter-Integrated Circuit, Universal
Asynchronous Receiver-transmitter, among others). Depending on the model and maker,
the autopilot may have other characteristics, but these are the most common for open and
closed hardware.

As Ground Control Stations (GCS), there are several software options. These sys-
tems control the autonomous flights, the visualization of the flight map, and make video
streaming in real-time, among others. Mission Planner [42] is a GCS widely used due
to having the full feature and lots of information. It is open-source and compatible with
Windows and macOS, and some of its features are: point-and-click waypoint, using Google
Maps/Bing/Open Street maps/Custom WMS; Select mission commands from drop-down
menus; Download mission log files and analyze them; Configure autopilot settings; Inter-
face with a PC flight simulator to create a full software-in-the-loop (SITL) UAV simulator;
Run its own SITL simulation of many frame types for all the ArduPilot vehicles. Another
popular GCS is the APM Planner 2.0 [43] because of its open-source system and compat-
ibility with macOS and Linux. It has a smaller user base and a reduced feature set than
the previous platforms, advantageous for new users. QGroundControl [44] works with
MAVLink [45], a lightweight messaging protocol for communicating with drones, capable
of autopilots, including ArduPilot [46]. It is unique among the GCS offerings as it runs on
all platform desktops and mobiles [47]. The last platform will be Litchi, a closed software
available on Windows, macOS, Android, and iOS, known for being the most trusted au-
tonomous flight app for DJI drones [48]. Other similar software are Drone Harmony [49],
Rainbow [50], and Red Waypoint [51].

It is essential to highlight that autopilot hardware and software have much information
and are available, reliable, easy to use, and have many open and closed sources depending
on the applications and price.

2.2. Optimization Algorithms

Optimization techniques, or algorithms, are used to find the combination of design
variable values that results in the best objective function value while satisfying all the equal-
ity, inequality, and side constraints [52]. Real-world optimization problems are often very
challenging. As a result, many problems must be solved by trial and error using various
optimization techniques. In addition, new algorithms are developed to cope with these
challenging optimization problems eventually. Nature has motivated many researchers
in different ways and thus is a rich source of inspiration. Nature-Inspired optimization
methods are applied in all areas, and their development and review are continuous.
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Hajihassani et al. [53] performed a comprehensive review of PSO application in
Geotechnical Engineering, presenting real examples as slope stability analysis, pile and
foundation design, rock, and soil mechanics, and tunneling and underground space tech-
nology, among others. In their study, the authors conclude that complex and not well-
understood problems are the common obstacles in geotechnical engineering, where finding
the optimum solution is difficult and even impossible in some cases. Consequently, based
on the available literature, PSO has been extensively used in the field as a powerful op-
timization technique to find the optimum solution. The simplicity of the operations and
reasonability of the results have paved the way to use PSO in various areas of geotechnical
engineering. The PSO is an optimization algorithm that employs a swarm of particles to
traverse a multidimensional search space to seek out optima. Each particle is a potential
solution and is influenced by the experiences of its neighbors and itself [54].

The Grey Wolf Optimizer (GWO) [55] is a technique inspired by the hunting method
of the grey wolf (Canis Lupus). This animal is at the top of its food chain and usually
lives in packs of five to 12 elements with a strict social hierarchy. The mathematical
models are based on the social hierarchy (α, β, δ, ω), tracking, encircling, and attacking
prey. In GWO, α, β, and δ lead ω wolves toward the areas of the search space that
are promising for finding the optimal solution. This behavior may lead to entrapment
in a locally optimal solution. Another side-effect is the reduction of the diversity of
the population and causes GWO to fall into the local optimum. Mohammad et al. [56]
proposed an improved GWO for solving engineering problems to overcome these issues.
The improvements include a new search strategy associated with selecting and updating
steps. This improved technique was tested in benchmark functions and experimental
environments. In the end, the authors show the applicability of the new algorithm for
solving four engineering problems, including pressure vessel design, the welded beam
design, and the optimal power flow problems for the Institute of Electrical and Electronics
Engineers (IEEE) 30-bus and IEEE 118-bus systems.

Benkercha et al. [57] proposed a modified flower algorithm (FA) for extraction of the
photovoltaic (PV) module parameters with maximum power point (MPP) estimation. The
FA [58] is a metaheuristic algorithm that imitates the behavior of a plant’s pollination. This
process has four main rules which can aid to describe the flower algorithm, being global
pollination (first rule), local pollination (second rule), flower constancy factor which can be
expressed by a reproduction probability while this latter is proportional to the similarity
among two working flowers (third rule), switching factor that allows passing from the local
pollination to the global pollination or vice versa (fourth rule). The modified algorithm has
the fundamental rules of the FA expect the fourth rule is modified so that the switching
probability is changed at each iteration. The main idea in this algorithm is to change the
value of the switching probability to increase the accuracy of the solution so that the solution
found will be close to the global solution. In addition, the probability becomes variable
in this new algorithm at each iteration. The authors also simulated and experimented
with the new technique for both single diode and double diode models, comparing it
with three other optimization algorithms and concluded that the new technique has better
optimization performance (accuracy, fast convergence, minimum iterations, and lower
error than the other algorithms), therefore the identified parameters by the modified FA are
more accurate than the one obtained from other algorithms. In predicting current, voltage,
and power at the MPP, the parameters for the single diode model show the effectiveness of
prediction in both features’ days, and a high matching between the measured MPP values
and the predicted one is achieved.

Typically, in practical design optimization of truss structures, the aim is to find a
minimum cost or weight design by selecting cross-sectional areas of structural members
from a table of available sections. The final design satisfies strength and serviceability
requirements determined by technical. Hasançebi et al. [59] proposed a bat-inspired
algorithm for structural optimization. Bat-inspired (BI) algorithm is derived from the
echolocation behavior of bats. Echolocation is an advanced hearing-based navigation
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system used by bats and some other animals to detect objects in their surroundings by
emitting a sound to the environment. After testing the presented technique in four truss
structure examples, the results demonstrate the algorithm’s efficiency, which found the
best-known design for the first two test problems and converged to improved designs in the
last two test problems. The results also show that the BI algorithm has a good convergence
speed compared to most other metaheuristic techniques.

There are many optimization algorithms, and the ones presented above are just a few
examples. Due to the need and this being a hot research topic, new techniques Nature-inspired
will continue to emerge to perform mathematical benchmarks and real-life applications.

2.3. UAV Path Planning Algorithms

Path planning is one of the most critical problems in UAVs; to find an optimal path
between source and destination. The path determination should be free from all collisions
from the surrounding obstacles. To have low computational cost and time for optimal path
planning is the primary objective of these techniques. The path generated should be optimal
to consume minimum energy, take less time, and reduce collision between the UAVs. On
the other hand, it needs to satisfy the robustness and completeness criterion during path
planning techniques. The significant challenges for optimal path planning of UAVs are
path length, optimality, completeness, cost, time and energy efficiency, robustness, and
collision avoidance [60].

In 2018, Zhao et al. [61] surveyed computational-intelligence-based UAV path planning.
Computational intelligence (CI) is a set of nature-inspired computational methodologies
and approaches that can address complex real-world problems for which mathematical
or traditional modeling is not practical. In their study, 231 articles were collected and
classified in three orthogonal dimensions: algorithms, time domain, and space domain.
Based on the aspect of algorithms, the authors presented Figure 2. This pie chart shows the
percentages of various CI algorithms used for UAV path planning from 2008 to 2017 through
the authors’ research. The genetic algorithm (GA) was the most common, accounting for
21%. Ant colony optimization (ACO) and artificial neural networks (ANN), as two of the
most famous intelligence algorithms, occupying the second and third positions with 16%
and 15%, respectively, followed by learning-based methods (LB), PSO, and fuzzy logic
algorithms (FL).
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From time-domain classification, the algorithms are divided into two categories: online
or offline. An online method is a method that can plan the UAV paths in real-time. In other
words, the UAV can identify changes in the environment and react to them. In contrast, an
offline method performs path planning based on offline information instead of real-time
information. In all articles studied, only 29.9% of methods are online, and most methods
focus on offline algorithms and their improvements, accounting for approximately 70.1%
of methods. According to their research, most studies focus on minimizing the length of a
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path with obstacle or threat constraints in the environment for offline path planning. The
optimization problem is multi-modal because there can be multiple paths with varying costs
for every set of obstacles or threats. Thus, CI methods such as GA or PSO would be highly
suitable for optimizing the generated paths. Researchers have shown that CI methods
have obtained high-quality solutions because they are computationally efficient on many
multi-modal unconstrained problems. Online path planning is a dynamic multi-objective
optimization problem. The most popular online path planning algorithms are based on GA
and FL. For the last classification, the algorithms are divided into 2D and 3D environments.
Traditional path planning methods have been described by a 2D scene. Of the articles, 55.8%
studied explore 2D path planning methods, while 44.2% of articles explore 3D methods. In
a 2D scene, it is supposed that the UAV flies by maintaining its height or manual adjustment.
From the optimization point of view, there are no standard solutions in a 2D path planning
problem. Fortunately, CI algorithms reduce the requirements of computing the gradients of
cost functions and constraint functions, enabling the problem to be solved and optimized.
Path planning algorithms for 3D environments are urgently needed due to an increasing
range of fields, such as transportation, detection, navigation, and operations. One classical
problem is modeling the environment while considering the kinematic constraints to plan
a collision-free path. Thus, a comprehensive analysis of the most optimization methods
for UAV path planning and the different aspect of its applications was presented, given a
complete guideline that can help related researchers.

An example of path planning applied to a specific area is presented in Li et al. [62]
applied to precision agriculture, using a hybrid PSO algorithm to optimize flight paths in a
UAV group. Farmers need to spray different orchard blocks daily. Using a single drone
becomes an impossible task due to endurance and battery change. The authors developed a
hybrid optimization algorithm that combined PSO with the variable neighborhood descent
technique as the local search to overcome this problem. This article aims to obtain the
optimal paths for the group of UAVs so that the flight time is minimized. After presenting
the structure and architecture of the proposed algorithm, the authors show the simulation
results made in two agriculture regions of Shaanxi, for both approach A (minimizing the
total flight distance) and approach B (optimize the flight paths of the whole UAVs group
with minimum make-span) with two and three groups of drones. In all path planning
simulations, the total path length was longer in approach B than in approach A, yet the
time was always shorter in approach B. Therefore, the authors conclude that the proposed
hybrid algorithm can effectively shorten the UAV group’s flight time, enabling multiple
agricultural UAVs to be better applied in precision agriculture.

3. Materials and Methods
3.1. Materials
3.1.1. Unmanned Aerial Vehicle (UAV)

Multirotor drones being low cost, with good maneuverability and VTOL capability,
are suitable for precision agriculture remote sensing tasks [63]. The UAV frame used in
this study was a multirotor with four motors (quadcopter), equipped with self-tightening
propellers that make it very simple to assemble and disassemble in the field and for
transportation. This configuration is also one of the most used in agriculture nowadays
and can lift its weight and equipment to repel birds without compromising flight time.
However, because of the short flight endurance from lithium polymer (Li-Po) batteries,
UAVs have a smaller field area coverage per flight than airplanes [63]. This work used four
Li-Po batteries in series with the capacity of 5000 mAh. Due to this study being of path
planning is not essential to have the best UAV/battery weight ratio, but this requirement is
advised in a real-life application. Figure 3 shows the multirotor used in this study during a
test flight.
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The optimization algorithm presented in this study generalizes to any UAV config-
uration and flight time capability. Thus, the essential component to consider is the flight
controller that needs to have an autopilot compatible with the chosen GCS, suitable internal
sensors, and the necessary input/output accordingly to the UAV configuration. In this
case, was chosen Hex Cube Black, Cubepilot, Geelong, Australia [64], previously known
as Pixhawk 2.1, which was already characterized in the last chapter. This autopilot is
flexible, intended primarily for manufacturers of commercial systems. It is based on the
Pixhawk-project FMUv3 open hardware design and runs PX4 on the NuttX OS [65]. The
Hex Cube Black is reliable and has a premium built quality with much information. As
a GPS receiver, the HERE+ was chosen due to quality construction, compatibility, and
information. Another essential component is the power brick that comes with the flight con-
troller that provides power to all the UAV components and measures current consumption
and battery voltage. Thus, it makes it possible to test the path planning optimization algo-
rithm in real-world scenarios. It is also important to mention that during the construction
of this system, it was necessary to use computer-aided design (CAD) techniques and 3D
printing via fused deposition modeling (FDM) to accommodate all the electronics into the
frame. The components manufactured through FDM were made in Acrylonitrile Butadiene
Styrene (ABS) because it is resistant to temperature changes and impact. ABS is the most
utilized material after Polylactic Acid (PLA), and in addition to the features highlighted
above, it also has good mechanical properties, low price, and long-life services [66].

To activate the flight plan, the RadioKing TX18S, ChangZhou, China was used, a
2.4 GHz, 16 channel (CH) multi-protocol radio frequency (RF) system transistor with the
open-source firmware OpenTX [67] for radio transmitters. A multi-protocol radio was
chosen because it can communicate with the FrSky X8R, which is the receiver that the UAV
of this study was built with but is also compatible with several telemetry receivers for
future work. However, those components are not the most important for this research work,
so it is only necessary to ensure the compatibility transmitter/receiver and an OpenTX
model with all the configurations for a safe flight. It is essential to mention that sometimes
accidents related to the arm and disarm of the drone happen unintentionally. For that
reason, a sequence of switches was programmed in the radio transmitter instead of the
pre-defined throttle stick, possible through the logical functions in OpenTX and changing
the pre-defined parameters in the GCS.
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3.1.2. Ground Control Station

GCS has several different functions that vary from software to software, as men-
tioned in Section 2.1. In this study, Mission Planner was used to updating firmware,
initial configuration, advance parameter configuration, and flight planning. Although
this software is easy to use in most of its features, it presents some complexity in others
due to being very complete. Particularly in the visualization and analysis of flight logs,
APMPlanner2 was used, which has a more straightforward and equally complete graphical
interface environment.

During the UAV setup start, the autopilot board was connected to the computer via
a USB port to load the firmware that matched the chosen frame. Mission Planner has all
the versions classified as: stable (passed all stages and it is good to use), beta (prior stable
that may have some bugs), and latest (passed development team and all automated tests
and are ready to be tested by users). To ensure a safe flight and easy configuration, a
stable version was selected. In this case, it was chosen ArduCopter V4.0.7 Quad, being the
newest stable version. Then the setup itself starts, and in this step the UAV is configured
and calibrated, ensuring a precise and safe flight. The setup menu of Mission Planner has
three main sections of settings: mandatory hardware, optional hardware and advanced.
The mandatory hardware allows the user to calibrate sensors such as the accelerometer
and compass, with a set of drone moves and the radio, moving the sticks and switches
of each channel to their minimum and maximum. Apart from the sensor calibration, it
also lets the user define flight and failsafe modes. Three flight modes were selected: loiter,
holds altitude and position; auto, executes pre-defined mission; and return to launch (RTL),
returns above takeoff location and lands. Failsafe modes ensure a safe flight if anything
happens and are triggered when the values are lower than those defined and activate a
flight configuration such as landing or RTL. For this case, a low battery, controlled by
the voltage measurement in the power brick and radio failsafe, previously called throttle
failsafe, was chosen because it uses the throttle channel to signal the loss of contact. Other
parameters can be adjusted in mandatory hardware, but they were not used as servo output
calibration, automatic dependent surveillance-broadcast, and ECS calibration. Important to
mention that although the last parameter is crucial for an efficient flight, the systems used
are blocked and do not allow calibration, thus having been manually adjusted the PWM
channel in the radio transmitter. Except for the battery monitor calibration found in the
second setup section, changes were not made in the two other sections. To calibrate the
power brick in the battery monitor set, two known measures provided by a power supply
were applied. First, the propellers were removed, and the system was connected to the
computer. Next, the UAV was powered by the power supply with a constant voltage of
16.80 V, measured with an accuracy of equal or less to 0.1% plus two digits. In the end,
the drone was armed and activated with full throttle, and the current consumption was
measured in the power supply also with an accuracy of equal or less to 0.1% plus three
digits. Both measures were inserted in the GCS software, and the values were loaded to
serve as references.

An essential function from Mission Planner for this work is mission planning. Together
with the autopilot, the software allows the UAV to flight through a waypoint map file
without human intervention. After setting the home location where the vehicle is armed,
the user can point and click a list of waypoints and create a mission. The generated mission
can be written into the autopilot, but it can also be read from it. Each mission can be saved
as mission plain-text file format that a text editor can read, and the files can also be loaded
into the GCS software. Important to mention that not all software’s share the same file
configuration. So, it is not always possible to make a waypoint file in one software and
read it in another. In the planning section of Mission Planner, it is possible to visualize a
map with the waypoints created and their configurations and the default parameters that
can be changed. Whenever a point is created, the software shows a bar with its parameters
that can be modified manually. The most important for this case are command (landing,
delay, RTL), delay, latitude and longitude coordinates, and altitude.
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Through the menus available in the software’s graphical interface environment, it
is easy to ensure that all the general parameters are set, but sometimes it is necessary to
change specific values, and for that, Mission Planner provides a complete list. Outside this
method, command-line interface configuration or Python programming language scripts
with pre-developed libraries are available.

3.2. Methods
3.2.1. Particle Swarm Optimization

Initially proposed in 1995 by Kennedy et al. [68], PSO is a method for optimizing
continuous nonlinear functions. This evolutionary computation technique was developed
to simulate a simplified social system and has been used for approaches across a wide
range of applications or specific requirements. The optimization algorithm is initialized
with a population (swarm) defined as n of random solutions called particles, that have the
dimension of the problem defined as dim. Each position xij of the jth dimension of the ith
particle keeps track of its best solution in the problem space (fitness) and the corresponding
coordinates, this value is called pbest. The overall fitness of the swarm is also tracked, and it
is called gbest. Every iteration defined as it changes the velocity vij of each particle toward
its pbest and gbest locations. Velocity is weighted by two different random numbers in the
interval [0, 1] defined as r1 and r2 and two constants named c1 and c2. The random numbers
control the acceleration, and the constants control the stochastic acceleration terms towards
pbest and gbest. In the original form proposed by Kennedy et al. [69], both c1 and c2 are set to
two, making the search to cover the region centered in pbest and gbest. These values can be
changed to achieve better performance, and over the year, new common values appear [70].

Equations (1) and (2) show how the velocity and position of each particle is updated.

vit+1
ij = vit

ij + c1·r1·
(

pbest ij − xit
ij

)
+ c2·r2·

(
gbest ij − xit

ij

)
(1)

xit+1
ij = xit

ij + vit+1
ij (2)

Since the initial version of PSO was not very effective in the optimization problem, a
modified PSO algorithm [71] appeared soon after the initial algorithm was proposed. Inertia
weight was introduced to the velocity update formula, and the new velocity update formula
became Equation (3). Although this modified algorithm has almost the same complexity
as the initial version, it has dramatically improved the algorithm performance. Therefore,
it has achieved extensive applications. Generally, the modified algorithm is called the
canonical PSO algorithm, and the initial version is called the original PSO algorithm [72].

vit+1
ij = w·vit

ij + c1·r1·
(

pbest ij − xit
ij

)
+ c2·r2·

(
gbest ij − xit

ij

)
(3)

After the new particle position is calculated, it is tested to ensure constriction. If it is
not within limits, it will have to be modified through a condition. As a stopping condition,
the PSO used the maximum number of iterations.

3.2.2. Haversine Formula

Haversine Formula has its law: all equations are used based on the shape of spherical
earth by eliminating the fact that it is slightly elliptical (ellipsoidal factor). This is a particular
case of a general formula in spherical trigonometry related to the sides and angles of a
spherical triangle. A certain degree of curvature affects the calculation of the distance from
one point to another on the earth’s surface [73]. It is necessary to know the geographic
coordinates of each point to apply this method. The latitude and longitude of each point is
represented as lat1, lat2, and lon1, lon2, respectively, and the earth’s radius is defined as r
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in Equations (4) and (5), representing the Haversine Formula. The distance between the
two points is defined as d in Equation (5).

c =

√
sin2

(
lat1 − lat2

2

)
+ cos(lat1)· cos(lat2)·

(
lon1 − lon2

2

)
(4)

d = 2·r·arcsin(c) (5)

3.2.3. Generate Random Waypoints within a Circle

To generate random waypoints within a circle, it is necessary two steps. Initial
random points are created with coordinates (x, y) over a disk with radius R. For that,
Equations (6) and (7) are used:

x = r ·cos θ (6)

y = r · sin θ (7)

where r ∈ [0, R], and is a random value calculated through Equation (8):

r = R·
√

random() (8)

Moreover, θ is another random value, where θ ∈ [0, 2π] and it is calculated by
Equation (9):

θ = 2·π·random() (9)

Then, it is necessary to convert the coordinates of the points to geographical coordi-
nates (latitude and longitude). One-degree latitude corresponds to approximately 111.2 km,
and one-degree longitude corresponds to approximately 111.2 km at the equator but 0 km
at the poles. Equations (10)–(12) were used to convert the points to waypoints.

OneDegree =
Earth Radius·2π

360
(10)

RandomLatitude =
latCenter + x
OneDegree

(11)

RandomLongitude =
lonCenter + y

OneDegree∗ cos
(

latCenter·π
180

) (12)

Earth Radius is given in meters, and latCenter and lonCenter are the latitude and
longitude of the center of the circle, respectively.

4. Novel Path Planning Algorithm
4.1. Global Architecture

Before developing the proposed optimization algorithm, studying the general problem
and the tools needed to solve it was necessary. Birds damage trees and eat fruits of
producers around the world, causing quantity and quality to decrease. Traditional repelling
systems work in the short term but become ineffective because they maintain low mobility,
and birds can easily detect patterns. UAVs have already proven to be essential tools to
solve this problem, bridging traditional systems disadvantages. However, optimizing the
path according to the bird’s pattern is necessary because drones have limited flight time.

After analyzing the problem, the algorithm was developed in Python programming
language, in version 3.8, due to its versatility and pre-existing libraries in all areas of the
algorithm, such as Graphical User Interface (GUI), math functions, and file manipulation.
The fields were divided into plots assigned by the producer. These segments will be men-
tioned as points of interest (PoI) and have different damage proportions. In this way, and
since the problem needs consistent application of the repelling systems, the optimization
algorithm needs to minimize the flight distance between sections and maximize it according
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to the percentage of damage in each plot. However, birds can detect patterns and learn
how to avoid them, so different numbers of random waypoints are required according to
the area. As already mentioned, Mission Planner was chosen as pre-planning software, so
it is essential to generate a compatible file of waypoints with various parameters. So, the
proposed algorithm can be divided into four main steps, and they will be explained in the
following sections.

4.2. Parameter Setting

Farmers will use this path planning optimization algorithm, so developing a GUI to
import the specific parameters was essential. The graphical interface was built, around
PySimpleGUI, to be visually simple and easy to use and can be divided into two main win-
dows. On the first page, the user can insert the file name, the destination path. Additionally,
it is further possible to enter the number of PoIs, the speed of the autonomous mission, and
the drone’s flight time in minutes. The speed matches the parameter WPNAV_SPEED on
Mission Planner. If the user does not want to modify it, a check button was built to activate
the default velocity. These last two parameters are used to calculate the total distance for
path planning. The user can also add the radius of the randomly generated waypoints
around the PoIs (random waypoints radius), the final error, and the height at which the
drone will fly. When everything is complete, it is possible to continue to the next page
or exit. Figure 4 represents the first window of the path planning optimization algorithm
GUI developed.
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The second window is used to insert the geographical coordinates of take-off, landing,
and PoIs, with the percentage of bird damage incidence at each point. In some cases, the
take-off and landing points are the same, so a check button has been included not to enter
the same values twice. To insert a new PoI, the user writes each value and clicks the Ok
button, and the values will appear below. The Clean button undoes action and allows
writing again. The incidence rate is the bird damage rate at each PoI, which can be assigned
the same value to all points through the Check button, or a value can be entered. This
rate is assigned from zero (there is no damage, and the PoI does not need points) to five
(severe damage, the maximum number of points must be generated). This scale ensures
differentiation in the number of random waypoints between PoIs. Still, if the farmer needs
more diversity, it can introduce any maximum value because the incidence rate is calculated
by dividing the value by the sum of the assigned values, obtaining a unit scale. At the
bottom, this page contains three buttons where the user can go back to the previous page,
start the optimization algorithm, or exit. Figure 5 represents the second window of the path
planning optimization algorithm GUI developed.
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4.3. Minimization between PoIs

Depending on the type of field and the position of the PoI, the UAV must fly according
to the needs. It is crucial that the algorithm receives the data and establishes the shortest
path to save the battery for the areas next to the PoI. The PSO to minimization is used
to calculate the fastest route or the minimum distance. Each particle contains a permute
sequence of PoIs, and the objective function is the sum of the distances, using Haversine
Formula, between the points, the take-off, and landing. In the end, this function will
send the minimum distance and the order sequence of PoIs that the drone needs to fly.
If a farmer inserts the value zero in the incidence rate, in other words, without any bird
damage, the algorithm will eliminate it from that flight. Figure 6 represents the importance
of minimizing the path between PoIs with two cases through an example. Figure 6a show a
random path between PoI and Figure 6b shows an optimized path between PoI. The path
of the first case scenario has a total distance of 268.3 m, while the path of the second case
scenario has 216.3 m, which represents a reduction of 52 m.
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4.4. Maximization of Random Waypoints

After planning the order of the PoIs, the proposed algorithm will calculate the distance
available to the random waypoints subtracting the minimum path between PoIs from the
total distance for path planning. The maximum number of points is calculated with the
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remaining distance. Then, the ratio between the total number and the incidence rate is
processed to find the unique number for each PoI. Then, random waypoints around the
PoI will be generated based on the method explained in the previous section, where the
radius of the circle is the random waypoints radius parameter inserted by the user in the
GUI. After each waypoint is generated, PSO will be applied again, but in this case, for
maximization. Each particle corresponds to a sequence of random waypoints, and for
the objective function, the Haversine Formula is used again, where the distance from the
first and last points are tested with the position of the PoI itself. In the end, the sum of
all distances is performed and compared with the total distance for path planning. If this
value is within the acceptable interval with the final error defined, a mission plain-text
file format file will be created with all waypoints. Otherwise, the algorithm will compare
the difference and adjust the total number of waypoints, generating new waypoints and
rerunning the PSO maximization.

4.5. Creation of Pre-Planned Mission File

In the end, the Python programming languages file handling functions are used to
write all waypoints parameters. If there is a file in the predefined folder with the same
name inserted on the parameter settings, the path planning optimization algorithm will
open it and write it over; otherwise, it creates a new file. The Plain-text file format is a
standard applied in many GCS and developer APIs for storing mission information. The
data included: mission plans, geofence definitions, rally points, parameters, logs, among
others. The first line contains the file format and version information, while subsequent
line(s) are mission items in each column [74].

5. Analysis and Discussion of Results
5.1. Introduction

Three case studies were developed to study the novel path planning optimization
algorithm, two in simulation and one in the field. Case study #1 uses several PoIs with
a low radius, and Case study #2 has fewer PoIs, with a high random waypoint’s radius
to serve as a comparison. Both simulations are used to understand better the algorithm’s
performance and the influence of each parameter. Case study #3 is developed to analyze
the real-world application and the impact on battery autonomy and height influence. A
peach orchard in Orjais, Covilhã, in Portugal, marked in the red line in Figure 7, was used
as a search field in both simulation and real-world tests.
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All cases used values real-life representations of each parameter, and the limits were
used to compare. Each variation was tested in the three possible scenarios:

• Scenario 1, same incidence rate (the same number of waypoints assigned per PoI);
• Scenario 2, different rates (different number of waypoints per PoI);
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• Scenario 3, no bird damage (in the vector of the previous scenario, were assigned zero
waypoints to some PoIs).

For all cases in the three scenarios, random vectors of damage were attributed. Due to
the heuristic nature of the PSO, for each scenario, all simulations ran thirty-five times, and
the average of the: total distance for path planning obtained by the proposed algorithm in
meters, the total number of waypoints, the number of iterations that the code had to re-run
to find a solution within the acceptance range, and the execution time in seconds, were
collected. In all cases, the PyCharm Community Edition as an interpreter on Windows
10 of 64 bits was used to run the proposed algorithm on a computer with an Intel Core
i7-6700HQ CPU and 16 GB RAM. In the field case, each of the scenarios and parameters
were tested individually with four flights. The values obtained in this case were: the voltage
difference in V, measured through the voltage sensor of the power brick, the autonomy
from the batteries, calculated through the battery’s charger in mAh, and the flight time in
seconds obtained from the flight logs.

Table 1 shows the initial configuration parameters used in each PSO, assigned through
the study of convergence curves to provide the best overall performance to the path
planning optimization algorithm.

Table 1. PSO initial configuration parameters.

Parameter Minimization Maximization

c1 2 2
c2 2 2
w Random Inertia Weight Random Inertia Weight

Number of Particles 5 5
Initial Velocity Random Random

itmax 50 200

It is noteworthy the same value for c1 and c2, giving equal weight to the experience of
the individual and the group, the low number of particles so that the algorithm process
faster, and different values in the maximum number of iterations due to the complexity of
each problem. The Random Inertia Weight, shown in Equation (13), was selected due to
being the best for efficiency [75].

w = 0.5 +
random()

2
(13)

5.2. Case Study #1

The goal of the first study case was to understand the algorithm’s performance with
multiple PoI and a low maximum random waypoints radius, varying each parameter (total
distance for path planning, final error, and take-off and landing position). To cover the
entire field of study, thirty-nine PoIs were chosen with random waypoints radius of twenty
meters. Figure 8 shows the PoIs (green dots) used with the corresponding radius from
which the random waypoint will be generated (white circle).
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As mentioned above, in all simulations, the three possible cases were performed with
the same incidence rate vectors represented in Table 2.

Table 2. Incidence rate vectors for Case Study #1.

Scenarios Incidence Rate Vector

Scenario 1 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Scenario 2 [3, 4, 1, 2, 4, 4, 2, 1, 5, 2, 3, 2, 4, 5, 5, 3, 1, 1, 2, 4, 2, 4, 3, 1, 2, 5, 2, 5, 1, 5, 2, 4, 2, 1, 3, 1, 2, 4, 3]
Scenario 3 [0, 4, 1, 2, 4, 4, 2, 0, 5, 2, 3, 2, 4, 5, 5, 0, 0, 1, 2, 4, 2, 4, 0, 1, 2, 5, 2, 5, 1, 0, 2, 4, 2, 0, 3, 0, 2, 4, 3]

The first parameter tested was the total distance for path planning, calculated through
the mission speed and the flight time. Since Li-Po batteries last an average between 20
to 30 min, with the Mission Planner’s default speed of 500 cm/s, the average values for
the total distance for path planning were between 6000 and 9000 m. In this condition, the
final error was constant at 5% of the total distance for path planning, and the same take-off
and landing waypoint was used, positioned on the center of the field. Table 3 shows the
results obtained in the variation of total distances for path planning. There is nothing to
point out about the total distance for path planning obtained by the proposed algorithm.
All scenarios for both distances presented identical results, with Scenario 2 having the best
result reaching an average error in total distance for path planning obtained from both
cases of less than 1% of the original value. Few points were obtained in the total number
of waypoints for the 6000 m distance, which is expected as this value is related to the
minimum distance between PoIs and the total distance for path planning. State that at both
distances for Scenario 1, the total number of waypoints did not change in all simulations. It
is also essential to highlight the number of iterations in Scenario 1 of the total distance for
path planning of 6000 m in which it was difficult for the algorithm to find a good distance
value, having to rerun an average of 13 times and a maximum of 96 iterations, much higher
than the value presented in the other scenarios. This occurred because the algorithm has
an equal number of waypoints across all PoIs with a lower total distance. Concerning the
execution time, it can be observed that the greater the total distance, the longer the time
will be, as it takes longer to process more waypoints. In Scenario 3 of the total distance for
path planning of 9000 m, the time is much longer than the other two scenarios. Since there
is a lower number PoIs, the algorithm must calculate more waypoints per point of interest.
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Table 3. Average results from the variation of total distances for path planning.

Total Distance Parameter Obtained Scenario 1 Scenario 2 Scenario 3

9000 m Total Distance Obtained
by the Optimization Algorithm [m]

8890.980 8932.331 8849.140
6000 m 6185.257 5951.177 5936.690

9000 m Total Number of Waypoints 236 233 253
6000 m 119 110 133

9000 m
Number of Iterations

4 7 7
6000 m 13 2 5

9000 m
Execution Time [min]

10.562 16.590 28.853
6000 m 8.681 1.823 5.226

Then the final error was tested, and the results are shown in Table 4. Initially, the
values were set at 10%, and 1% of the total distance for path planning. After performing
some tests at 1%, it was noticed that the optimization algorithm was very slow and quickly
blocked in the random waypoints function, needing improvement in future works. Due to
not becoming a valid comparison, the value was defined as 3%. Since it is the final error to
be varied, the total distance for path planning was constant at 7500 m, and the same take-off
and landing position was used, positioned on the center of the field. In the case that the
final error was set at 10%, the average values in the three scenarios have a maximum of less
than 7% related to the total distance for path planning obtained by the proposed algorithm.
When the final error is 3%, all scenarios average errors of less than 1% of the actual total
distance for path planning. The variation of the final error did not affect the total number
of waypoints, being that for both cases and all scenarios, the values were identical.

Table 4. Average results from the variation of final error.

Final Error Parameter Obtained Scenario 1 Scenario 2 Scenario 3

10% Total Distance Obtained
by the Optimization Algorithm [m]

7136.907 7099.347 7014.388
3% 7528.572 7556.262 7506.082

10% Total Number of Waypoints 163 159 178
3% 184 179 199

10%
Number of Iterations

3 5 5
3% 72 45 6

10%
Execution Time [min]

3.924 6.067 9.718
3% 203.933 83.237 15.678

As expected, between the two cases, there was a significant discrepancy in the number
of iterations and, consequently, the execution time, since the smaller the error, the longer
it takes for the optimization algorithm to find a value of the total distance for the path
planning within the acceptance range. Note that with a final error of 10%, the optimization
algorithm was faster in the scenarios in the order of 3-2-1 and that in the other case, the
opposite occurred because there is a greater total distance for path planning and needs to
be divided by more PoIs, generating more random waypoints per PoI. In conclusion, the
optimization algorithm with a final error of 3% becomes impractical for scenarios 1 and 2.

The last parameter varied, ending Case Study #1, was the take-off and landing position.
Table 5 shows the results obtained. Two cases were used to test this parameter: first with
the same take-off and landing position placed in the center of the field and then with
different take-off and landing located at opposite sites in the field. Since the take-off and
landing positions varied, the total distance for path planning and final error was constant
at 7500 m and 5%, respectively. During the test of this parameter, all values remained
identical for the two cases in all situations, except for the total distance for path planning in
different take-off and landing positions, having presented a more significant discrepancy
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to the original value. Since the maximum and minimum values were identical for all
scenarios in both cases, it is possible to indicate that there was only a higher variation in
the simulation values.

Table 5. Average results from the variation of the take-off and landing position.

Take-Off and
Landing Position Parameter Obtained Scenario 1 Scenario 2 Scenario 3

Same Total Distance Obtained
by the Optimization Algorithm [m]

7508.493 7551.033 7473.269
Different 7219.699 7524.375 7399.987

Same Total Number of Waypoints 178 179 198
Different 177 174 194

Same
Number of Iterations

6 7 6
Different 7 7 6

Same
Execution Time [min]

10.889 10.995 14.064
Different 12.168 11.673 14.098

5.3. Case Study #2

After understanding the performance of the optimization algorithm with the variation
of each parameter in the first case study, a second case was developed to acknowledge the
difference in the execution of the algorithm with different numbers of PoIs and random
waypoint radius. In contrast to the previous case, fewer PoIs were selected with a higher
radius of random waypoints. Ten PoIs were chosen to cover the entire field of study with
random waypoints radius of fifty meters. Figure 9 shows the PoIs (green dots) used with
the corresponding radius from which the random waypoint will be generated (white circle).
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Figure 9. PoIs of the Case Study #2.

In this case study, the performance of the optimization algorithm of the PoIs presented
in Figure 9, named hereafter as the case with lower PoIs, and was compared with the PoIs
in Figure 8, referred henceforth as the case with higher PoIs. As mentioned above, in all
simulations, the three possible cases were performed with the same incidence rate vectors
represented in Table 6.
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Table 6. Incidence rate vectors for Case Study #2.

Scenarios Minimization

Scenario 1 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Scenario 2 [3, 4, 1, 2, 4, 4, 2, 1, 5, 2]
Scenario 3 [0, 4, 1, 2, 4, 4, 2, 0, 5, 2]

The average parameters tested in the previous case for both PoIs schemes were kept,
along with the test variables (total distance for path planning obtained by the proposed
algorithm, total number of waypoints, number of iterations, and execution time). The
values corresponding to the parameters were: 7500 m for the total distance for path
planning, a final error of 5%, and the same take-off and landing point. Table 7 shows the
results obtained with the PoIs of both cases. The total distance for path planning obtained
shows similar values on average, with lower PoIs presenting better results, below 1%
of the original value. The case with higher PoIs has more total number of waypoints in
all scenarios because the random waypoints are closer to the PoI, so there is less flight
distance between the random waypoints. Thus, the path planning optimization algorithm
can generate more points. The variables most negatively affected by the reduction in
the number of PoIs and consequent increase in the radius of the random waypoint are
the number of iterations and the execution time. Clearly, in this case, the optimization
algorithm becomes impracticable due to being very slow. One thing to note is the low
number of iterations per second of execution compared to the Case Study #1 situation with
a final error of 3%. The execution time is identical, but there are more iterations because the
algorithm takes longer to reduce the total number of waypoints until it has a viable value.

Table 7. Average results from Case Study #2.

Number of PoIs Parameter Obtained Scenario 1 Scenario 2 Scenario 3

Higher Total Distance Obtained
by the Optimization Algorithm [m]

7498.936 7599.392 7419.634
Lower 7556.118 7511.199 7563.032

Higher Total Number of Waypoints 180 179 198
Lower 126 126 129

Higher
Number of Iterations

6 7 6
Lower 21 16 25

Higher
Execution Time [min]

11.570 10.222 12.806
Lower 209.111 175.687 408.003

5.4. Case Study #3

Case study #3 was developed to understand the influence of the path planning opti-
mization algorithm and the drone’s flight height (wind influence) on the battery life and
corresponding flight time. Two cases were then developed, one at the height of 10 m,
near the treetops, and the other at 20 m. The field tests were performed in a cornfield in
Macieira, Lousada, Portugal. Following the exact measurements used in the peach tree
field, eight PoIs were then used to ensure equality, with a random waypoint radius of
twenty meters. A short path was created so that the environment was as controlled as
possible, always keeping the drone in line of sight for security. Figure 10 shows the PoIs
(green dots) used with the corresponding radius from which the random waypoint will be
generated (white circle).
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The field tests for all cases were also performed in the three possible cases with the
same incidence rate vectors represented in Table 8.

Table 8. Incidence rate vectors for Case Study #3.

Scenarios Minimization

Scenario 1 [1, 1, 1, 1, 1, 1, 1, 1]
Scenario 2 [3, 4, 1, 2, 4, 4, 2, 1]
Scenario 3 [0, 4, 1, 2, 4, 5, 2, 0]

For both heights, the values corresponding to the parameters were: 1500 m for the
total distance for path planning, final error of 5%, and the same take-off and landing
point. It is also important to mention that the Mission Planner default speeds were all
kept. Four batteries were then used of the same brand with the same configuration, and no
battery was repeated per scenario. All flights were carried out over three days at different
times sequentially to ensure data reliability. Table 9 shows the results obtained from the
quadcopter studied. After analyzing the outcomes, it is possible to indicate that scenario
3 presents lower voltage difference and higher autonomy, although this does not directly
transpose into more flight time but from the fewer corrections between PoIs made by
the UAV. Another consideration is that although the optimization algorithm does not use
height as a parameter in path planning, the results show more flight time for 10 m because
the cornfield was covered with trees that protected the drone at lower altitudes. It is also
essential to indicate that there is no direct connection between the batteries’ autonomy and
the flight time. One would expect less flying time with higher autonomy, but this does not
always happen since drones depend on factors such as wind. It is also possible to establish
that there is no relationship between the mission velocity and the flight time, considering
that for 1500 m, an expected 5 min mission should be obtained, and the time varies between
7 to 14 min, approximately.
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Table 9. Average results from Case Study #3.

Height Parameter Obtained Scenario 1 Scenario 2 Scenario 3

10 m Voltage Difference [V] 1.17 1.23 1.09
20 m 1.22 1.25 1.08

10 m Autonomy [m] 1662 1804 1569
20 m 1763 1837 1497

10 m Flight Time [sec] 599 724 588
20 m 612 742 722

6. Discussion

Three study cases, two in simulation and one in the field, were developed to under-
stand the performance of the optimization algorithm, the parameter variation, and the
influence on battery management. All tests were made in the three possible scenarios: same
incidence rate, different rates, and no bird damage. Case study #1 used more PoIs and
a low random waypoints radius, where all input parameters were varied to understand
how the optimization algorithm performed. In Case study #2, a new PoIs scheme was
created with a lower number PoIs and a higher random waypoints radius compared to the
previous case study. Case study #3 was the field test where the height was varied.

After analyzing the results obtained in Case study #1, it is possible to infer that the
algorithm guarantees an outstanding average error of the total distance for path planning,
having a maximum error of 7%, where the final error was set at 10%. However, the average
error in most examples of the first case (final error at 5%) was 1.3% of the original value
of the total distance for path planning. It is also possible to indicate that this algorithm
has a reasonable execution time. The final error is the parameter that most influences the
results, and the smaller the error, the longer will be the running time, with an average
of almost 2 min when the error is 3%. When the final error is 5%, the average execution
time is 12 s for all cases. In the end, it can be observed that there is a relationship with the
variation of the parameter of the total distance for path planning, the number of waypoints,
and the execution time. The greater the distance, the greater the other two parameters
are. Important to observe with Case study #1 that the takeoff and landing position do not
influence the other parameters.

Case study #2 shows that the algorithm with fewer PoIs and a larger random waypoint
radius increases the execution time of the proposed algorithm, making it very slow, with
an average execution time of 4 min and 24 s. This result reveals that it will be necessary
to create a ratio between the number of PoIs and the total distance for path planning or
improve the function that calculates the number of random waypoints. From Case study
#2 results, it is also possible to verify that the smaller the number of PoIs, the greater the
total number of waypoints. This result comes from the lower distance between the PoIs
and because the path planning optimization algorithm can generate more waypoints.

Case study #3 shows that fewer PoIs (Scenario 3) cause a higher autonomy with an
average of 1533 mAh than 1712 mAh and 1820 mAh of the other two scenarios. A factor
is not directly related to the flight time. The ratio between the mission velocity and the
flight time does not relate as anticipated, being expected 5 min in mission time and some
flights reached 14 min. One of the most critical conclusions derived from Case study #3
is that height does not influence flight, and terrain and weather conditions are the most
influencing factors.

After performing all case studies, it is possible to conclude that the proposed algorithm
present satisfactory results, especially in the final error in the total distance for path planning
obtained and the execution time. With some modifications in the future, the proposed
algorithm can be tested by producers.
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7. Conclusions

Birds eat and damage fruit in orchards, leaving it susceptible to infection and reducing
its quality [5]. Although this problem is general worldwide, this work was based and tested
on the needs of peach and cherry farmers in the region of Covilhã, Portugal. Most still
use traditional methods such as netting, planting, and harvesting manipulation, with bird
cannons and loudspeakers, which are the most technological systems but still primitive.
Birds are unique pests because they are highly mobile, resulting in greater spatial and
temporal variation in damage levels than mammalian pests. Today, most systems employ-
ees are not very mobile and are predictable over time, becoming ineffective in the long
run. UAVs have advantages in versatility and low maintenance, making them potential
solutions to this problem when combined with repelling systems. One of the most notable
disadvantages is limited battery capacity turned into low flight time, being essential to
improve the efficiency of the mission by planning the path according to the problem.

This article proposes a novel path planning optimization algorithm for semi-autonomous
UAVs in bird repellent systems based on Particle Swarm Optimization, developed in Python
programming language, to maximize the path and randomly generate waypoints according
to the bird damage. Nature has been continuously solving challenging problems using
evolution. Therefore, it is reasonable to be inspired by nature to solve different challenging
problems. Swarm intelligence and evolutionary computation are searching methods based
on the physical behavior and natural evolution of social intelligence development of real
animals and others in real life [76]. These techniques can optimize complete systems while
maintaining the simplicity and efficiency of other algorithms. One of these techniques is
Particle Swarm Optimization, a population-based self-adaptive, stochastic optimization
technique [77], used for its performance, accuracy in solving optimization problems, easy
implementation, and adaptation [78]. Recently, there are more effective variants of PSO
algorithms such as the cooperative coevolutionary particle swarms (CCPSO) proposed
by [79,80] where its superiority in terms of efficiency, performance and scalability in
relation to the original PSO has been demonstrated. A novel approach is described in
this paper. It starts by considering that a method to calculate the distance between two
geographic coordinates has to be applied in the path planning optimization algorithm, and
after research, the haversine formula was used. Another essential method applied is the
generation of random geographic coordinates within a circle with disk point picking. A
UAV was built and configured to fly through a pre-planned mission to test the proposed
algorithm and, all flights were carried out in a controlled, safe environment, in line of sight.

The path planning optimization algorithm proposed in this paper can be divided
into four main steps: Parameter Setting; Minimization Between PoIs; Maximization of
Random Waypoints; Creation of Pre-Planned Mission File. As to the author’s knowledge,
this is a novel path planning optimization algorithm, so it is impossible to compare it with
other algorithms. So, three case studies were created to understand the performance and
parameter variation of the proposed algorithm. All cases were tested in three possible
situations: same incidence rate, different rates, and no bird damage. Case Study #1 was
in simulation and used thirty-two PoIs with twenty meters random waypoints radius to
understand how the proposed algorithm performed when each parameter was varied. In
the second case, Case Study #2, also in simulation, a new PoIs scheme was created with ten
PoIs, and fifty meters as random waypoints radius and was compared to the previous case
study. For last, a field test with the quadcopter was undertaken. During Case Study #3,
the height was varied in the three possible scenarios, and the voltage difference, autonomy,
and time were evaluated. It should be mentioned that, although the focus of this study is
on path optimization and not the effectiveness of the path planning optimization algorithm
to repeal birds, during the field case study, birds ended up disappearing.

In conclusion, this algorithm intends to overcome the failures of traditional systems in
bird damage to fruit crops used by producers today, optimizing UAV flights, distributing
points according to the bird damage, and creating random waypoints so that they do not
detect patterns. In addition, although it is aimed at this agricultural problem, the algorithm
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can be modified for other scenarios and problems and adapted to any autopilot or ground
control station.
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