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Abstract —  Bird damage to orchards causes large monetary 

losses to farmers. The application of traditional methods such 

as bird cannons and tree netting became inefficient in the long 

run, along with its high maintenance and reduced mobility. 

Due to their versatility, Unmanned Aerial Vehicles (UAVs) 

can be very useful to solve this problem. However, due to 

their low autonomy it is necessary to evolve flight planning.  

In this article, an optimization algorithm for path planning 

of UAVs based on Particle Swarm Optimization (PSO) is 

presented. This technique was used due to the need of an 

entry optimization algorithm to start the initial tests. The PSO 

algorithm is a simple and has few control parameters while 

maintaining a good performance. This path planning 

optimization algorithm aims to manage the drone's distance 

and flight time, applying optimization and randomness 

techniques, to be able to overcome the disadvantages of other 

systems. The performance of the proposed algorithm was 

tested in a tree case simulation that represents all the possible 

cases. 
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I. INTRODUCTION  

Unmanned Aerial Vehicles (UAVs), commonly known as 
drones, are electronic systems with low maintenance and high 
versatility. This technology has been developed over the years 
and nowadays there are autonomous drones based on path 
planning and waypointing with commercial standards applied 
in different areas such as military search and rescue and 
agriculture [1], [2]. 

Despite continuous evolution of the techniques and 
technologies to control bird damage in agriculture, the loss of 
fruit and trees remains a long-term and costly problem. Birds 
flock, such as of Starling and Magpie, as shown in Figure 1, 
cause high losses over the years to farmers by destroying the 
trees and damaging fruits, making them susceptible to 
diseases, which can lead to a decrease in production and 
quality [3]. The most used repelling methods are the 
loudspeaker with sounds of danger emitted by the same 
species or predatory animals, bird cannons, tree netting and 
planned planting and harvesting. All techniques mentioned 
have the same problems that are high maintenance and in the 
long run become inefficient, because birds get used to it. In 
order to solve these, we resort to bird monitoring already 
applied in airports or science studies and UAVs that can be 

helpful due to its mobility, reaching multiple affected areas 
without predictable patterns.  

Figure. 1. Flock of black starling on a peach field. 

When building a drone to perform a specific job is 
necessary to consider weather, typology, control, lift weight 
and battery capacity since all these factors will influence the 
flight duration. Supposing that all these components are well 
dimensioned and from the hardware the drone cannot have 
more flight time, it is necessary to start optimizing the flight 
process, i.e., the path planning to ensure greater effectiveness 
during flights. Meta-heuristic optimization algorithms are 
simple techniques inspired in physical phenomena, animal 
behaviors or evolutionary concepts that have become very 
popular over the last decades to solve problems in different 
fields [4]. Due to their simplicity, these algorithms have been 
applied when a fast solution is required. Particle Swarm 
Optimization (PSO), the most well-known meta-heuristic, 
swarm based, bio-inspire optimization algorithm. It is very 
simple to use and implement due to the small number of 
control parameters, presenting itself as a good entry level 
optimization method with fit performance results to test the 
path planning algorithm in all scenarios. This technique has 
already been applied in various fields of industry such as 
network weights and network structure for artificial neural 
network, reactive power and voltage control, and ingredient 
mix [5].  

In this article, we present and test a path planning 
optimization algorithm to be used with a bird monitoring and 
repelling system. This device consists in two separate parts: 
(1) a device coupled to a drone that will generate audio and 
light in a random way and (2) a network of sensors that will 
detect the movement of birds and send the data to the main 
computer. The data will be analyzed by the optimization 
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algorithm and a flight path will be generated according to the 
bird movement. The focus of this work is the path planning 
optimization algorithm and not the complete solution. 

II. RELATED WORK  

 Most of the work developed in path planning is related 

to the Vehicle Routing Problem (VRP) or with is variant 

Vehicle Routing Problem with Drones (VRPD). This 

problem aims to determine a set of optimal routes performed 

by vehicles with limited capacity to serve a given set of 

customers. Many models, algorithms and heuristics have 

been developed for it [6]. The VRPD is a recent problem that 

has been receiving a lot of work due to the interest of 

companies like DHL, Amazon, and Alibaba. This is a perfect 

example of a drone flight duration problem and the need to 

improve path planning according to the task required. Tseng 

et al. [7] show the concept of battery-operated and flight with 

recharging. Firstly, an empirical study of energy consumption 

to determine battery performance was performed, 

considering various flight scenarios and the commercial 

model 3DR. Next, the problem of flight planning with 

recharging optimization for drones was studied, where the 

goal was to complete a tour mission for a set of sites of 

interest. In the end the solution is implemented and tested in 

different case studies. Recently, more work related with 

agriculture and drones has been developed. Rabello et al. [8] 

present a mobile app to optimize the drone flight in a 

precision agriculture scenario. The Android platform utilizes 

Google Tools and for the optimization an algorithm based on 

recursive auctions. This app was developed to generate a 

drone path planning based on waypoints with a predefine 

distance in the chosen area.  

 Farmers need to spray daily different farm blocks. 

Using a single drone becomes an impossible task due to 

endurance and battery change. So, Li et al. [9] use PSO 

algorithm to optimize flight path in UAVs groups. This work 

focus on optimize the flight paths of the whole UAVs group 

with minimum make-span instead of minimizing the total 

flight distance.  

 As described, some work has been developed in path 

planning and flight optimization. However, the novelty of this 

study is related to the application of the proposed algorithm 

to bird damage problem. Additionally, to authors’ knowledge 

it is the first algorithm introducing the concept of random 

waypointing to avoid patterns, together with optimization 

techniques to ensure that the drone travels the maximum or 

minimum distance. In this work we decided to optimize the 

path planning with a Swarm technique, especially the PSO, 

due to its simplicity and efficiency for the first tests of the 

global algorithm. 

III. PARTICLE SWARM OPTIMIZATION  

 PSO was first proposed by Eberhart et al. [10] and it is 

a method for optimization of continuous nonlinear functions. 

This evolutionary computation technique was developed to 

simulate a simplified social system and has been used for 

approaches that can be used across a wide range of 

applications or specific requirements [5].  

 The optimization algorithm initialized with a 

population (swarm) defined as N of random solutions called 

particles, that have the dimension of the problem define as 

dim, and to each solution is assigned a randomized velocity. 

Each particle keeps track of its best solution in the problem 

space (fitness) and the corresponding coordinates, this value 

is called pbest. The overall global fitness of the swarm is also 

tracked, and it is called gbest. 

 Every iteration defined as it changes the velocity 

defined as v of each particle toward its pbest and gbest 

locations. Velocity is weighted by two different random 

numbers in the interval [0,1] defined as r1 and r2 and two 

constants named c1 and c2. The random numbers control the 

acceleration, and the constants control the stochastic 

acceleration terms towards pbest and gbest. 

 In the proposed algorithm, different from the original 

equation, the velocity is also controlled by an inertia weight 

defined as w that provides a balance between global and local 

exploration and exploitation, and results in fewer iterations 

on average to find sufficiently optimal solution. In the 

original work, authors created a maximum velocity named 

Vmax that serves as a constraint to control the global 

exploration ability of the swarm.   

 At the end, it is necessary to verify if all the particles 

are inside the bound dimension of problem. Figure 2 shows 

the pseudo code of PSO algorithm that was used in the 

proposed algorithm. 

Figure. 2. Pseudo code of PSO algorithm. 

IV. ALGORITHM ARCHITECTURE  

 In order to develop the proposed optimization 

algorithm, it was necessary to study the problem and the tools 

that were needed to solve it. For the bird damage in 

agriculture problem, it is necessary constant application of 

the repelling systems, so the algorithm needs to minimize the 

flight time between sensors and maximize it in the most 

affected areas. But birds can detect pattern and learn how to 

avoid them, so is also required to the algorithm the ability to 

read the data from the sensors and create different numbers 

of random waypoints according to the areas.   

Initialize the swarm with N and dim  

Initialize c1, c2, w, itmax 

while it < itmax: 

 for each particle  

  Calculate the fitness of each particle 

  Update the pbest and gbest  

 end for  

 for each particle  

  r1 = rand 

  r2 = rand 

  v = w*v+c1*r1*(pbest-particle)+ c2*r2*(gbest-

particle) 

  particle = particle + v 

  if particle < lower bound or particle > upper bound 

   Initialize a new particle  

  end if 

 end for 

 it = it +1 

end while  
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 Since the beginning we decided to use the Mission 

Planner Home, created by Michael Oborne as our ground 

control station due to its open source, point-and-click 

waypoint system and configuration. To use this software the 

algorithm needs to generate a file of WAYPOINTS 

(.waypoints) that consists of a geographic coordinated system 

(latitude and longitude) and height above takeoff. Figure 3 

represents the main steps of the optimization algorithm to 

generate the waypoint file that will be used to path plan drone 

flights. 

 

 

 

 

 

 

Figure. 3. Path planning optimization algorithm main steps.  

A. Variable initialization 

 This algorithm has the objective to be applied to any 

bird or field, so it is necessary some specifications and 

variables, such as the geographic coordinates of take-off, 

landing and sensors. The coordinates need to be described in 

latitude and longitude, respectively and the file with the 

detection data needs to be in the same order as the algorithm. 

This system does not provide feedback with the drone, so it 

is necessary to enter the maximum flight distance.  It is also 

required the maximum and minimum distance from which the 

waypoint will be generated according to the sensor. 

B. Haversine Formula 

 Several formulas have been tested to measure the 

distance between two geographic coordinates, including the 

Google Maps Platform Distance Matrix API. We ended up 

choosing Haversine Formula due to its simplicity and 

precision.  

 The Haversine Formula is an important equation in 

navigation, giving great-circle distances between two points 

on a sphere from their longitudes and latitudes [11]. To apply 

this method is necessary the geographic coordinates of each 

point, represented as lat1, lat2 and lon1, lon2  respectively 

and the radius of the earth defined as r. Equation (1) and (2) 

represents the Haversine Formula, the distance between the 

two points is defined as d. 

c = � sin
2 �lat1-lat2

2
� + cos�lat1�

* cos�lat2� *sin2 ( lon1-lon2
2

)
 (1) 

 

d = 2*r*arcsin(c) (2) 

C. Path between sensors 

 Depending on the type of field and the position of the 

sensors, the drone must flight according to the needs. For that, 

it is necessary that the algorithm receives the data and 

establish the shortest path to save battery for the areas next to 

the sensors where birds are. 

 To calculate the fastest route, the PSO to minimization 

is used where each particle contains a value corresponding to 

a geographic coordinate of a sensor and the objective function 

is the sum of the distances, using Haversine Formula, 

between sensors, the origin and final position. In the end, this 

function will send the minimum distance and the order of the 

sensors that the drone needs to fly by. In the event of a sensor 

does not have recent detections, the algorithm will eliminate 

it in that flight. Figure 4 represents two cases of flight 

between sensors, one with optimization represented as a) and 

the other without optimization represented as b). The path of 

the first case scenario has a total distance of 216.3 m, while 

the path of the second case scenario has 268.3 m, which 

represents a reduction of 52 m. 

 

 

Figure. 4. a) With optimization function b) Without optimization function. 
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D. Waypoint distribution in affected areas 

 After planning the order of the sensors, the proposed 

algorithm will remove the distance between the sensors from 

the total distance and will determine a maximum number of 

points according to the minimum distance between them, 

which is established through a cycle that executes the 

difference between the actual final distance and the one 

introduced by the user. Thus, the maximum number of points 

possible for the drone will be calculated.  Then, random 

waypoints around each sensor will be created, generated 

based on the minimum and maximum distances to the sensor 

and their number varies according to the number of 

detections. Figure 5 represents the pseudo code of the 

function that generates random geographic coordinates.   

Figure. 5. Pseudo code random waypoints function. 

 PSO will be applied again but in this case for 

maximization. Each particle corresponds to the value of a 

new random waypoint and for the objective function the 

Haversine Formula is used again where the distance from the 

first and last points are tested with the position of the sensor 

itself. In the end, the sum of all distance is performed and 

tested with the maximum flight distance. In case that the two 

values are the same (with an error), a file will be generated 

with the flight positions and the geographical coordinates of 

each waypoint. Otherwise, the algorithm generates new 

points and runs the maximization PSO again. 

V. CASE STUDIES 

 To test the proposed algorithm, a flight mission was 

simulated in a peach field in the region of Orjais, Covilhã, in 

Portugal. Table 1, shows the latitude and longitude of each 

sensor in the simulation.  

TABLE I.  COORDINATES OF EACH SIMULATION SENSOR. 

Sensor Latitude Longitude 

Sensor 1 40.34037440 -7.37956170 

Sensor 2 40.34070150 -7.38012490 

Sensor 3 40.34114710 -7.38064530 

Sensor 4 40.34075460 -7.38121390 

Sensor 5 40.34030080 -7.38072570 

Sensor 6 40.33995320 -7.38012490 

 Three case studies were then chosen to test the 

proposed algorithm in all conditions, where initially the same 

number of waypoints were assigned to each sensor (case a)), 

then a random number (case b)) and in the end, zero 

detections were assigned to some sensors (case c)). Table 2 

shows the detection ratio that was attributed to each sensor, 

per case study. This is the ratio between the number of birds 

detected individually and the sum of all sensors, however due 

to these tests being a simulation the values are random. 

TABLE II.  DETECTION RATIO IN EACH SENSOR PER CASE. 

Case a) b) c) 

Sensor1 0.1667 0.1000 0.0000 

Sensor2 0.1667 0.050 0.2500 

Sensor3 0.1667 0.2500 0.0000 

Sensor4 0.1667 0.3000 0.4000 

Sensor5 0.1667 0.1000 0.2000 

Sensor6 0.1667 0.2000 0.1500 

 For all the cases, a total flight distance of 1500 meters 

was used, with 25 meters of acceptance error by the 

algorithm. The maximum and minimum values for the 

generation of random waypoints were 15 and 2 meters 

respectively, a lower bound of  0.0000001 and upper bound 

of 0.001 to latitude and 0.0001 to longitude. In both PSO, 

constants c1 and c2 were 2, the inertia weight of 0.4, the 

initial velocity values were generated randomly. Only 5 

particles were used for each algorithm so that they could 

process faster. The maximum number of iterations was 

different due to the complexity of each problem, establishing 

50 and 200 iterations for the maximization and minimization 

optimization algorithm, respectively. 

VI. RESULTS  

 The proposed path planning optimization algorithm 

were developed in Python coding language and executed in 

the PyCharm IDE developed by JetBrains. Tests were 

performed on a Windows 10 of 64-bit computer, i7-6700HQ 

CPU and 16GB of RAM. Due to the heuristic nature of the 

algorithms, they were tested individually sixty times each. 

 For each simulation, the flight distance data in meters, 

the total number of waypoints, the execution time in seconds 

and the number of iterations that the code had to re-run  to 

find a solution within the acceptance range were collected 

and the average was calculated, represented in table 3. As 

shown in the previously mentioned table, all case study 

presents a similar result to the reference distance. The rest of 

the test parameters are identical in cases a) and b), with c) 

having a much higher value in all. This happens especially for 

the time and iteration parameters, due to the global 

architecture of the algorithm, and the random nature of the 

PSO, where it is necessary to execute more steps when there 

are areas without birds causing a greater distribution number 

of waypoints per sensor. 

 

 

lb = [value non-zero] 

ub = [this number changes the distance that the waypoint will 

be created] 

for up to number of waypoints of the sensor  

 while distance to sensor > maximum or distance to 

sensor < minimum 

  for until 2 (latitude, longitude) 

   value = lb+(ub-lb)*rand() 

   waypoint = first four values of the 

geographic coordinates of the sensor + value 

  end for  

 distance to sensor = Haversine Function of waypoint 

and sensor  

 end while  

end for  
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TABLE III.  DETECTION RATIO IN EACH SENSOR PER CASE. 

Case Distance [m] Total Waypoints Iterations Time [sec] 

a) 1503,52 82,483 14,967 39,521 

b) 1504,465 83,883 13,767 42,036 

c) 1505,761 100,983 28,383 184,07 

 We must emphasize that the overall processing time of 

the path planning optimization algorithm, despite all its 

complexity, is quite good for a practical case. In all cases 

having a maximum time of 390.2175 seconds processing case 

c) and a minimum of 3 seconds in case a). 

VII. CONCLUSION  

 Since agriculture presents itself as a crucial sector, it is 

necessary to understand and eliminate all related problems. 

One of these problems arises from bird damage since they can 

destroy various types of crops ranging from fruits to grains 

[12]. The common techniques due to their low mobility and 

randomness become ineffective in the long run. UAVs have 

high versatility and low maintenance, which makes them 

potential solutions to these problems. Its biggest problem is 

its low energy capacity, so it is necessary to improve the 

efficiency of the type of flight by planning the trajectory. 

 Heuristic techniques can optimize complete systems 

while maintaining the simplicity and efficiency of other 

algorithms. One of these techniques is Particle Swarm 

Optimization and is used in the proposed algorithm to find 

the best path through the distance. 

 The basic architecture of the algorithm presented in 

this paper can be divided in four steps. Initiation of 

parameters, where the geographic coordinates of takeoff, 

landing and sensors are introduced. Then, the path between 

sensors is minimized, ensuring that the drone does not waste 

time between sensors. Subsequently, random points are 

generated around the sensors and their path is maximized. At 

the end, a file is created to be read by the drone's controller. 

 This is a recent work that needs to be improved but it 

has already shown satisfying results in the three simulations, 

having in all cases presented a good average in distance and 

execution time. Future work will be related to the 

optimization of the algorithm, more specific in the test of 

other optimization techniques and the improvement of the 

function that generates random waypoints. These approaches 

should improve the execution time and quality of the 

algorithm. Field tests must also be carried out where the 

capacity and autonomy of the batteries must be tested, along 

with the efficiency to solve the bird damage problem.   
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