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Abstract: Rice irrigation by continuous flooding is highly water demanding in comparison with
most methods applied in the irrigation of other crops, due to a significant deep percolation and
surface drainage of paddies. The pollution of water resources and methane emissions are other
environmental problems of rice agroecosystems, which require effective agronomic changes to
safeguard its sustainable production. To contribute to this solution, an experimental study of alternate
wetting and drying flooding (AWD) was carried out in the Center of Portugal in farmer’s paddies,
using the methodology of field irrigation evaluation. The AWD results showed that there is a
relevant potential to save about 10% of irrigation water with a reduced yield impact, allowing an
additional period of about 10 to 29 days of dry soil. The guidelines to promote the on-farm scale AWD
automation were outlined, integrating multiple data sources, to get a safe control of soil water and
crop productivity. The conclusions point out the advantages of a significant change in the irrigation
procedures, the use of water level sensors to assess the right irrigation scheduling to manage the soil
deficit and the mild crop stress during the dry periods, and the development of paddy irrigation
supplies, to allow a safe and smart AWD.

Keywords: rice irrigation; Oryza sativa L.; water saving; AWD; MEDWATERICE; Lis Valley; Lower
Mondego; Portugal

1. Introduction

Rice (Oryza sativa L.) is the worldwide major staple crop, cultivated in over 164 Mha [1]
and essential for ensuring global food security, given that over 90% of production is used
directly for human consumption. On the other hand, rice is a very high-water demanding
crop, making the water resources a limiting factor for sustainable production. This issue is
compounded by the fact that the world demand for rice is increasing due to the population
increase in the regions that consume more and its high nutritional content. Rice crop
has an important economic and social value in several regions, namely in Mediterranean
countries [1]. In Portugal, rice is cultivated in about 30 thousand ha, especially in the
Mondego, Tagus, and Sado Valleys, in lowland areas and coastal wetlands, with a particular
role in the preservation of biodiversity and soil conservation [2].

Rice is cultivated in paddies and traditionally has been irrigated by continuous flood-
ing (CF) for environmental and microclimatic reasons for several centuries. The main
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problems related with flooding rice irrigation refer to a high-water demand, nutrients lost
by leaching and runoff, soil methane emissions to the atmosphere, and the agrochemical
pollution of water resources of agroecosystems [3]. Facing the increasing threat of water
scarcity, it urges developing agronomic and irrigation practices to reduce water use, while
maintaining or increasing land and water productivity. In short, the efforts for the sus-
tainability of rice crop are of strategic importance in the context of food security. A great
research effort has been made in the last decades to answer these challenging questions,
looking for alternatives to CF, which is a key element to water saving and safeguarding
the environmental quality of rice agroecosystems [4,5]. Numerous studies have demon-
strated agronomic and irrigation advances, namely focusing on land preparation through
precise land leveling (PLL) and soil tillage [6]; multiple irrigation system solutions, such as
zero-grade fields, and alternate wetting and drying [7,8]; multiple-inlets and furrows [9];
pivot irrigation [10]; drip irrigation [6,9–12]; and advances in cultivation pattern, such as
the system of rice intensification, direct seeding methods cultivation, aerobic rice systems,
ground cover rice production systems, and genetic approaches [6,13].

Alternate wetting and drying irrigation (AWD) consists of intermittent flooding
through a sequence of flooding cycles with very thin water depths (about 5 cm), fol-
lowed by drying periods. The recession is only due to infiltration and evaporation, leaving
the soil surface layer in a non-saturated condition for a few days (a condition called “dry
soil”, in contrast to “flooded soil”) until the next reflooding cycle [14,15]. The soil is kept
dry until hairline cracks are visible, or the decrease in the soil water potential does not
cause significant crop stress. To avoid compromising production, the AWD must consider
the thermoregulatory effect of the water, in the most critical stages of the crop (such as
panicle differentiation, flowering, and early ripening), ensure weed control, and the pro-
tective effect against strong winds. AWD has been successfully used in several countries,
such as India [16], Bangladesh [17], Philippines [18,19], Vietnam [20], China [21], and the
USA [5,22].

The benefits of AWD, when compared with CF, include: (i) irrigation water savings
by up to 30% [15,23,24] due to the decrease in deep percolation, facing a lower soil water
pressure, and a decrease in the soil evaporation; (ii) a reduction of greenhouse gas emissions
(methane plus nitrous oxide) by 45–90% [3,25]; (iii) a reduction of the arsenic accumulation
in the grain by 50% [26–29]; and (iv) a reduction of methylmercury concentrations in rice
grain by 38–60% [30,31] and in the soil [30].

The AWD management is based on two parameters: timing and threshold [24,32].
The timing is when in the growing season the drying cycles are imposed, namely by the
vegetative, reproductive, or ripening phases, or then throughout the crop season. The crop
sensitivity to water stress is a major factor to determine this timing. The AWD threshold
is the value of a soil water content that refers a limit condition of water deficit used to
determine the time for reflood. There are two categories for AWD threshold (Table 1):
(i) Severe, implying a high risk of crop water stress, even a significant yield reduction,
usually when the soil water potential drops below −20 kPa, corresponding to the time
after ponded water disappeared (TAD) higher than seven days; and (ii) Mild (or safe),
when the soil water potential (SWP) is not outdated (SWP ≥ −20 kPa), or the field water
level (FWL) is not allowed to drop more than 15 cm below the soil surface (FWL ≤ 15 cm),
corresponding a TAD between 5 and 7 days.

Table 1. AWD management parameters and thresholds.

Parameter Units
AWD Threshold

Data Source
Severe Mild

Time after ponded water disappeared (TAD) days >7 5–7 [15,32]

Field water level (FWL) cm >15 <15 [15,24,32]

Soil water potential in the rooting zone (SWP) kPa <−20 <−10 to −15 [23,24]
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The irrigation systems of paddies can benefit from the advances that the automa-
tion of surface irrigation have undergone, due to a great effort of modernization on gate
control, remote and feedback control, and real-time optimization [33–37]. For example,
Masseroni et al. [36,37] presented the first automatic system for CF paddy irrigation in
Europe. Automation aimed at AWD is more demanding than in CF, requiring articulating
sensor data for a reliable control process to avoid the risks of crop water stress. AWD
alters the water management logic of CF; namely, the management process, comprising the
use of the following equipment and sensors [38]: (i) automatic devices to control paddies
water supply, aiming to save labor and for water accounting to collect data for irrigation
management; (ii) field water level (FWL) sensors, placed on water tubes, to continuously
measure the water level above and below the soil surface; (iii) soil water potential (SWP)
sensors placed in the rooting zone, to monitor the matrix tension to assess the conditions of
crop water stress, and providing data to manage the irrigation scheduling; (iv) automatic
weather stations, proving real-time climatic data to measure the rainfall and determine
the crop evapotranspiration and irrigation water requirements; and (v) the integration of
information through telemetry and digital systems, allowing the precise control of irrigation
managing, using the feedback of several of the sensors data, used automatically to control
and avoid the risk of crop water stress due to the drying periods of AWD, in a framework
of labor reductions [36]. These smart and automatic solutions have a high potential for
practical application, namely at a district scale [38]; however, there is a lack of required
information on protocols for optimizing AWD, incorporating information on specific crop
water stress, as well as farm commercial solutions.

This research aimed to provide knowledge to outline the guidelines to promote the
development and automation of AWD by rice farmers, by studying the effects of AWD
on rice yield and water use relative to the actual practice of CF in the Central Region
of Portugal.

2. Materials and Methods

The experimental study was carried out in 2020 in the Lower-Mondego and Lis Valley
Irrigation Districts, located in Coastal Center of Portugal, with a total irrigated area of
about 14,000 ha, and a rice area of about 6000 ha [39,40] (Figure 1a). This region has a
Mediterranean climate, Csb and Csa of Köppen classification, with an annual average
precipitation of about 800 mm to 900 mm. It has temperate and mild summers, with
virtually no rainfall, and rainy winters with mild temperatures [41] (Figure 2). The soils
are mainly alluvial with high agricultural quality, some of which are poorly drained, with
waterlogging and salinization risks, particularly on the downstream areas where rice is
cultivated in paddies [39]. The river water used for irrigation is diverted and conveyed
mainly by gravity, from weirs, through a collective system managed by Water User’s
Associations (WUA) [39].

In these valleys, rice is cultivated in traditional paddies, on lower soils with heavy
texture and poor drainage, with a shallow and relatively saline groundwater table. Paddies
are irrigated by CF, with ca. 10 cm of ponding depth, and a frequency varying from daily
to a few days. The flooding of paddies plays several determinant roles [42]: (i) temperature
regulation during the first weeks of crop development due to microclimatic imperatives,
particularly during night-time in the initial phase of the cycle and during flowering; (ii) after
sowing, to avoid seed collecting by wild birds; (iii) control of weeds development; (iv) con-
trol of the crop damage due to the strong wind; and (v) soil salt leaching in susceptible
areas. In its turn, the initial drainage periods enable for example: (i) the application of
phytopharmaceuticals, especially herbicides and fungicides; and (ii) a good rooting of the
seedlings, while avoiding soil hardening, and a reduction of algal proliferation on surface
water. The paddies are highly water demanding due to a significant deep percolation, and
surface drainage [42].
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Figure 2. Average monthly air temperature, precipitation, and reference evapotranspiration of the
Lower Mondego study area, relative to the 1981–2021 period (P—precipitation; ET0—reference
evapotranspiration; Tmin—minimum air temperature; Tmed—medium air temperature; Tmax—
maximum air temperature) (source: [41]).

The experimental design, at each site, consisted of two rice plots located in identical
edaphoclimatic conditions, one irrigated by CF and the other by AWD. Three trial sites
were selected: Bico-da-Barca (BB) and Quinta-do-Canal (QC) in the Lower-Mondego, and
Nuno-Guilherme (NG) in the Lis Valley, mapped in Figure 1b, being their geographic
coordinates and soil characteristics presented in Table 2.

A single Italian rice cultivar, Ariete (japonica type) was used in all the sites. Ariete is
classified as semi-early, with a cycle of about 139–150 days. It was sown in mid-May, and
harvested throughout October, and was fertilized with doses of about 70–90 kg N/ha. Crop
development and irrigation practices, and corresponding dates, are presented on Table 3
(example of NG site).

https://maps.google.pt
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Table 2. Study site characteristics.

Characteristics Parameters
Experimental Sites

BB QC NG

Location
Latitude 40◦10′31” N 40◦06′54” N 39◦52′17” N

Longitude 8◦39′40” W 8◦48′08” W 8◦52′58” W
Altitude (m) 5 2 8

Type of farm State agricultural experimental station Associative Private

Area (ha) Field plots 0.11 4.8 3.0

Texture (%)
Sand 30.0 6.4 7.1
Silt 49.3 59.2 37.3

Clay 20.7 34.4 55.6

Texture class * Silt loam Silty clay loam Clay loam

Soil
pH (H2O) 5.9 7.6 7.2

Soil Organic Carbon (%) 2.3 2.3 2.7
Bulk Density (g cm−3) 1.28 1.28 1.25

Groundwater table level (bss, cm) 40–80 50–80 75–85

Soil Water
Content (cm3

cm−3)

Saturation 0.519 0.517 0.520
Field Capacity 0.484 0.471 0.385
Wilting Point 0.090 0.188 0.204

* Texture classification according to Gomes and Silva [43]; Soil characteristics are relative to the superficial depth
of 60 cm; bss—below the soil surface. Experimental sites: BB, Bico-da-Barca; QC, Quinta-do-Canal; and NG,
Nuno-Guilherme (data source of soil texture (% and class) was adapted from [44]).

Table 3. Crop development and irrigation practices and corresponding dates (NG site data).

Crop Development and Irrigation Practices Days after Sowing *, DAS

Initial soil flooding −1
Wet sowing 0

Start tillering 34
Panicle differentiation 60

Start AWD 67
Flowering 90

Last irrigation event 128
Harvest 148

* Sowing on 14 May 2020.

The experimental plots with the CF treatments were fully managed by the farmers.
Traditional flooding practices were applied, which were used as a reference to compare
with the AWD. Identical agronomic practices were adopted in both treatments, namely the
soil preparation, including the ploughing and harrowing, land levelling, fertilization, wet
sowing, and crop protection treatments. Water from the river was supplied by gravity-fed
systems, using open canals and buried pipes, which were manually controlled.

The methodology adopted in the AWD plots was based on the description by
Bouman et al. [23], in the framework of the Mild version, with adjustments, according
to the local experimental conditions. In summary, the following steps were taken: (i) an
initial flooding for wet sowing, followed by an initial drying through a fast surface drainage
event, to favor rice emergence like the traditional practice; (ii) shallow ponding during
the vegetative phase, considering the drying periods required for herbicide application,
usually twice, like the traditional practice; (iii) AWD technique applied after the vegetative
phase, taken in account that: (a) the target was a flood water depth not higher than 5–7 cm;
(b) the irrigation schedule considered was an interval of 10 to 14 days between irrigation
events; (c) the water level should not fall to 15 cm below the soil surface, measured in a
water tube; (d) Particular attention was paid on the flowering period because at this phase
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plants are very sensitive to water stress; and (iv) the last irrigation event took place about
20 days before the harvest.

The hydraulic monitoring system installed had two components: water tubes with
automatic sensors, and water accounting devices with continuous record. The water tubes,
consisting of PVC pipes, were placed on soil at 25 cm depth. These tubes, were 40 cm
long and 10 cm in diameter, have holes with 1 cm in diameter through which the soil
water flows into its lumen, allowing the observation of FWL and the measurement with
a piezometric head. Figure 3 shows a water tube installed in a rice plot, during a dry
period of AWD. The water tubes were equipped with automatic water level sensors, where
data were complemented with the measurement of the atmospheric pressure through a
barometer located nearby (Table 4). Regularly, at least once a month, the data from loggers
were downloaded to a PC for further data analysis. During the crop season, manual FWL
measurements were carried out in the water tubes with a ruler, and the data were used for
testing and calibrating the sensors.
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Figure 3. A water tube (red arrow) installed in a rice plot, during a dry period of AWD.

Table 4. Sensor characteristics applied in the experimentation.

Objective Brand and Model

Water level In-Situ Inc., model Rugged TROLL 100, Fort Collins, CO, USA
Atmospheric pressure In-Situ Inc., model Rugged Baro TROLL, Fort Collins, USA

Water flow velocity VALEPORT, EM flow meter model 801 flat, Decon, UK
Pluviometer Pronamic ApS, diam. 16 cm, Ringkøbing, Denmark
Data logger Campbell Scientific, Inc. CR300, Logan, UT, USA

Air temperature and humidity Campbell Scientific, Inc. EE181, Logan, UT, USA
Solar radiation Campbell Scientific, Inc. CS301, Logan, UT, USA

Wind speed Lambrecht meteo GmbH, ORA, Göttingen, Germany
Remote communication of weather station Cinterion, BGS2 Terminal RS232, Praha, Czech Republic

The comparison of CF with the AWD practices was based on the water level recorded
on water tubes, elucidating about the water level above the soil surface in the flooding
irrigation plots, during the entire crop season.

The measurement of the paddies inflow and the outflow discharges resorted to flumes
or weirs, in which reference water head was measured by automatic water level sensors
(Table 4) [45,46]. In its turn, the calibration of these devices was carried out through
the canal section velocity method, where the point velocities were measured with an
electromagnetic current meter (Table 4).
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The meteorological observations were carried out with automatic weather stations
installed near the experimental sites, with a set of sensors for air temperature and humidity,
solar radiation, and wind speed, a Class A pan evaporimeter, and remote communication
tool via GSM to the several data users (Table 4). Daily reference evapotranspiration was
calculated by Penman–Monteith method, based on Allen et al. procedure [47]. The daily
crop evapotranspiration (ETc) was calculated through the crop coefficients of 1.25 for
flooding condition, and 1.10 for dry periods [47].

These measurements allowed obtaining daily data from the system, necessary for
the daily water balance method that enabled to calculate the deep percolation (DP), by
applying the Equation (1),

DP = P + I − ETc − SD − ∆SW, (1)

which requires the values of precipitation (P), irrigation (I), surface drainage (SD), and
storage difference of surface or subsurface soil water (∆SW) [42].

The crop yield parameters were determined at harvest, collecting the aerial part of the
total rice plants in diverse unit areas of 0.5 m2, with about 5-unit areas per hectare. The
biomass harvest was latter processed in the laboratory, determining the dry matter of grain
with 14% of humidity and straw and the weight of 1000 grains.

Based on the irrigation water applied (I, m3 ha−1), precipitation (P, m3 ha−1) and yield
(Y, kg ha−1), the water productivity (WP, kg m−3) was calculated through the Equation (2),

WP = Y/(P + I). (2)

The effect size (ES, %) [24] was calculated, to compare the effects of AWD with several
literature data sources, through the Equation (3),

ESx = ln (xAWD/xCF) × 100%, (3)

where, x is the response variable (yield, water use, and water productivity).

3. Results
3.1. Soil Flooding Changes and Crop Development

The characterization of the traditional CF practice, illustrated in Figure 4 with data
from the NG site, evidenced the contrast with the dry periods in the AWD treatment. It
considered four dry periods during the vegetative phase, and that after the 16 July, the
AWD technique had been applied, making five wet–dry cycles, until the final period of
20 days before the harvest. These cycles corresponded to a period between 12 and 14 days,
with irrigation depths between 92 and 109 mm, and 5 or 6 days, with dry soil, per cycle.

The increase in time with dry soil due to AWD, in contrast with CF, was 10, 25, and
29 days, corresponding to a period with dry soil relative to the cultural cycle of 47%, 57%,
and 35%, for QC, BB, and NG, respectively (Table 5).

The irrigation allocations recorded in the CF plots were by decreasing order: 1725 mm
in BB, 1588 mm in QC, and 1292 mm in NG (Table 6). These results correspond to AWD
relative water savings of 11.8%, 12.6%, and 9.5%, reductions in cultural evapotranspiration
of 3.4%, 1.6%, and 2.7%, and reductions in deep percolation of 15.0%, 22.1%, and 13.9%, for
BB, QC, and NG, respectively. These percentages are higher if considering “after vegetative
phase” only.

Average rice yield (grain with 14% of moisture) was higher in the plots irrigated by CF
than in those with AWD. In CF plots, rice production was 9.58 t/ha in QC, 8.10 t/ha in BB,
and 5.99 t/ha in NG, whereas in the AWD plots it decreased by 3.4% and 5.6% in QC and
NG, respectively, and increased by 0.3% in BB. In turn, the water productivity increased
in the three sites, 10.6%, 13.6%, and 3.7%, in the same order, having been the maximum
at QC with 0.667 kg/m3, 0.543 kg/m3 at BB and 0.452 kg/m3, in NG. However, the yield
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varied significantly between the sites, possibly due to the local edaphoclimatic conditions
(Table 7).
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Figure 4. Water level above and below the soil surface (cm) of CF and AWD irrigation during 2020 rice
crop season in NG site, Lis Valley (CF—continuous flooding irrigation; AWD—alternate wetting and
drying irrigation).

Table 5. Number of days with wet and dry soil, in the experimental rice fields irrigated with CF and
with AWD.

Experimental Site Soil Condition
Crop Season (Days) After Vegetative Phase (Days)

CF AWD CF AWD

QC
Wet 88 78 40 29

Dry 59 69 33 44

Total 147 147 73 73

BB
Wet 83 58 40 21

Dry 52 77 39 58

Total 135 135 79 79

NG
Wet 118 89 68 39

Dry 22 51 7 36

Total 140 140 75 75

CF—Continuous flooding; AWD—Alternate Wetting and Drying; Experimental sites: BB, Bico-da-Barca; QC,
Quinta-do-Canal; and NG, Nuno-Guilherme. Adapted with permission from Oliveira et al. [48], 2022, IGI Global.

Table 6. Water use parameters in the experimental rice fields irrigated with CF and with AWD,
during the crop season, and after the vegetative phase.

Experimental Site Water Use (mm)
Entire Cropping Season After Vegetative Phase

CF AWD CF AWD

QC

ETc 696.3 685.1 298.9 287.7

I 1588 1388 651.5 425.1

P 130.4 130.4 77.6 77.6

DP 538.5 419.7 261.4 152.6

SD 516.4 460.8 211.6 117.0
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Table 6. Cont.

Experimental Site Water Use (mm)
Entire Cropping Season After Vegetative Phase

CF AWD CF AWD

BB

ETc 588.0 568.1 282.0 263.4

I 1725 1522 742.1 537.5

P 99.6 99.6 87.8 87.8

DP 1 1264 1075 651.4 494.2

NG

ETc 674.7 656.3 347.4 329.0

I 1292 1169 639.2 517.0

P 81.8 81.8 68.4 68.4

DP 587.8 506.2 330.2 248.6

SD 154.8 118.2 36.5 0
ETc—Crop Evapotranspiration(mm); DP—Deep percolation (mm); P—Precipitation (mm); I—Irrigation (mm);
SD—Surface Drainage (mm); CF—Continuous flooding; AWD—Alternate Wetting and Drying; Experimental
sites: BB, Bico-da-Barca; QC, Quinta-do-Canal; and NG, Nuno-Guilherme. 1 Includes a small fraction of surface
drainage. Adapted with permission from Oliveira et al. [48], 2022, IGI Global.

Table 7. Rice and water productivity of CF and AWD plots.

Experimental Site Method Y (t/ha) WP (kg/m3) G (g) RS (t/ha)

QC
CF 9.582 ± 1.230 0.603 28.9 ± 1.42 5.49 ± 0.70

AWD 9.252 ± 6.120 0.667 28.9 ± 0.74 5.62 ± 0.53

BB
CF 8.101 ± 0.987 0.470 31.0 ± 1.68 4.45 ± 0.39

AWD 8.124 ± 0.920 0.534 31.0 ± 0.53 5.28 ± 0.77

NG
CF 5.993 ± 1.264 0.436 32.0 ± 1.94 4.12 ± 1.03

AWD 5.659 ± 0.298 0.452 30.8 ± 0.17 3.65 ± 0.30

Y—Yield (t whole rice grain, 14% of humidity/ha); WP—Water Productivity (Y(kg/ha)/(I + P, m3/ha) (kg/m3);
G—Weight of 1000 grains, with 14% of humidity (g); RS—Rice Straw (dry matter, t/ha); CF—Continuous flooding;
AWD—Alternate Wetting and Drying; Experimental sites: BB, Bico-da-Barca; QC, Quinta-do-Canal; and NG,
Nuno-Guilherme. Adapted with permission from Oliveira et al. [48], 2022, IGI Global.

As air temperature is a determining factor for rice cultivation, namely the average
temperature together with thermal variations and critical temperatures [43], the thermic
comfort for rice in the plots was assessed. Considering the NG site (Figure 5), the minimum
temperatures were higher than 10 ◦C, and in a short period between the 15 and 16 July,
maximum temperatures were 37 ◦C and 38 ◦C. From sowing (14 May) to the harvest
(10 October), the average air temperature was mild, and the temperature range were within
the critical values, except in the reproductive and early maturation phases, when the
minimum values were below the critical value (Figure 5).

The temperatures below 17 ◦C for long periods during the reproductive and the early
maturation phases, as observed in the NG site (Figure 5), might explain the lower yield in
both treatments at the NG site, in comparison with the yield of the Lower Mondego sites.
The average and minimum temperatures recorded were below the optimal, and in some
days, below the minimum critical value of 15 ◦C during the panicle differentiation, which
might have delayed flowering and inhibited fertilization [42,49,50].
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3.2. Outline of Guidelines to Promote AWD Automation

The effective implementation of AWD requires changes in the water supply system
and in the irrigation management. The monitoring of the surface and subsurface water level
requires real-time information that should be collected by sensors to minimise the water
crop stress. The frequent flooding irrigation must be carried out using the automatic gates
control, in a logic of irrigation modernization. This technological process is fundamental
for the progress of AWD, to reduce the negative impacts of CF.

Based on our experience and on Siddiqui et al. [38], Masseroni et al. [37], and Pham
et al. [20], the data required to develop a system for the automation of on-farm scale AWD
were identified and organized (Table 8). These data comprise general information about
the crop, information adjusted to local conditions, and the incorporation of experience and
knowledge for the rational management of AWD.

Table 8. Data and parameters for the automation of farm scale AWD irrigation.

Data Type Parameters Description or Comments

General data and rules

Crop database Development phases duration, Crop coefficients
Land preparation Dry or wet sowing, procedure of first flooding

FML thresholds Maximum and minimum soil water level (on water
tubes), according to the crop phase

AWD management When to apply AWD
Maximum number of days with dry soil per cycle

Critical weather data Wind, Temperature

Actual crop data Sowing, Pesticide, and Fertilizers application
Critical water stress phases

Real-time data based on sensors

WFL Measured in water tubes
Inflow rate Measured in weirs, flumes, or water meters

Meteorological Temperature, Precipitation, ETo, and wind
Weather forecast (5–10 days)
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Table 8. Cont.

Data Type Parameters Description or Comments

Farmer operative rules
Application periods Dates to apply AWD

Max. TAD For crop safety reasons
FWL thresholds Water level thresholds on water tubes

Irrigation operation
Inflow gate Operative mode: on/off

Outflow gate Operative mode: on/off
Field water balance Get irrigation decision and assess its performance

The control unit integrates information and, through the soil water balance, allows the
assessment of the system performance, and to get irrigation decisions, to open the gates
during a specific time, or to close them. The feedback loops are fundamental to a safe
control of soil water and irrigation inflow.

The logic of the information transmission process is presented in the flowchart of
Figure 6, including the data collected by the farmer, and automatic sensors, to the ir-
rigation management decision, articulated with the water supply conditions at district
level [7,51,52].
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Figure 6. Flowchart of the logic of the automatic AWD system.

4. Discussion

The analysis of the observed effects of AWD on rice yield, water use, and water
productivity, according to the Equation (3) (Table 9), show that the unique value that
contradicts the expected tendency of AWD, is the effect on yield at the BB site, which
did not decrease in the AWD treatment in comparison with the CF one. The comparison
of the effects of AWD on yield, water use, and water productivity with the published
results of worldwide studies [24], is presented in Figures 7 and 8. It was observed that
the overall effect of AWD (Figure 7): (i) on yield—the values of QC and NG sites are both
negative (−3.5% and −5.7%), unlike those from BB, which has an effect very close to zero;
(ii) on water use—the observed effects are significantly different (about −11%, compared
with −26%); and (iii) on water productivity—the observed effects are also significantly
different (3.6 to 12.8%, compared with 24%). The first conclusion of this comparison is that
the applied AWD had a lower impact on yield, and a lower impact on water saving and
water productivity.
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Table 9. Observed Effect Size (ES) of AWD on yield, water use, and water productivity.

Experimental Site
Effect Size (ES) * (%)

Y WU WP

QC −3.5 −12.4 10.1

BB 0.3 −11.8 12.8

NG −5.7 −9.4 3.6

* Calculated by Equation (3); Y—Yield (t whole rice grain, 14% of humidity/ha); WU—Water Use (m3/ha);
WP—Water Productivity (Y(kg/ha)/(I + P, m3/ha) (kg/m3); Experimental sites: BB, Bico-da-Barca; QC, Quinta-
do-Canal; and NG, Nuno-Guilherme.
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The observed effects of AWD on yield were compared with results presented by
Carrijo et al. [24], the relative to Mild AWD option, which was the practice adopted in our
study. The observed effects relative to the soil properties influencing AWD (pH, SOC, and
texture), are very close to the Carrijo et al. [24] ones obtained worldwide, showing that the
effectiveness of the AWD is dependent on those soil characteristics (Figure 7).

The effect of those soil characteristics on the effectiveness of AWD in terms of crop
productivity could be explained by the following reasons, in which relevance is more
significant in severe AWD [24,29]: (a) The effects of pH: (i) in alkaline soils the high per-
centage of exchangeable sodium (Na) damages the soil structure and induces impermeable
layers; the soil compaction does not have a negative impact on the CF, as the root system
is very superficial, but on the contrary, it affects the rice irrigated with an AWD system
as it limits the depth of the roots, which cannot compensate for the lower moisture in the
surface soil layers; (ii) the high levels of Na in alkaline soils can lead to Na toxicity effects
in plants; this problem is mitigated in the CF in the soil saturation condition, due to the
higher Na soil leaching and the higher SWP value; however, in unsaturated soil the higher
Na concentration causes a greater toxicity risk, thus, rice becomes less tolerant under AWD,
with a lower productivity; and (iii) alkaline soils may have higher nitrogen losses due
to ammonia volatilization, which is more prevalent in non-flooded conditions; therefore,
lower yields under AWD may be due to reduced N root uptake in alkaline soils. (b) The
effect of SOC: (i) the higher soil organic matter positively affects the soil water holding
capacity and the plant-available water, due to its direct impacts on lower bulk density,
aggregate stability, high porosity, and improved structure; and (ii) the higher soil organic
matter positively affects the nitrogen mineralization in aerobic soil conditions, implying
that N availability may be increased under AWD systems conducted in high SOC soils.
(c) The effects of texture: the higher clay content reduces the soil percolation, and nitrate
leaching, implying that higher levels of nitrogen are available to the root system.

AWD could not be used in lowland soils with serious drainage problems, where dry
soil conditions are not feasible due to the high level of groundwater table (data not shown).
On the other hand, AWD is not recommended in situations of high level of salinization of
the very shallow groundwater table, to avoid the capillary rise of salts to rice root zone
during the dry periods.

The water savings and the impacts on production due to AWD, recorded in our
study are, in general, in agreement with the values indicated in the literature [6,7,16,18].
Therefore, this experiment confirmed the importance of AWD for water saving in rice
irrigation, especially from the reproductive phase, after the middle of July onwards. This
water saving allows the WUA’s to mitigate the water scarcity in this period at the district
level, which corresponds to the maximum demand of most irrigation crops, such as corn,
in Portugal [53]. The successful application of AWD also requires several changes in the
rice production system, namely on PLL, weed control, and fertilization scheme. PLL is a
crucial complementary aspect to the success of AWD, so that the water depth on the soil is
uniform throughout the entire plot. This is a condition for adopting a thinner water layer
that, therefore, allows for a reduction in the use of water [54]. To this end, a regular and
rigorous practice of level maintenance and monitoring should be encouraged [55].

The AWD negative impacts on yield raises the question of the farmer’s economic
income, making this technique unattractive, especially when the water supply is sufficient
for CF. This issue claims for a political strategy to promote rice production sustainability
because the governmental support to change the rice irrigation system should guarantee
the farmer’s income. Moreover, the recognition of another positive environmental impact
of AWD, with the increasing period that the soil is in aerobic conditions, is the reduction of
methane emissions into the atmosphere [56].

Irrigation management in the alternating flooding period can be carried out in several
ways. The simplest procedure consists of measuring the level of the saturated soil, follow-
ing its lowering during the drying period, and establishing the critical level to determine
the most opportune moment for the next flooding. Another option is based on measuring
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the soil water potential in the root zone, being the timing of irrigation based on this param-
eter. Therefore, the use of soil moisture, or soil water potential sensors to control the crop
water stress during the drying phase is an important issue [57]. These different methods
can be articulated with sensing mechanisms aimed at automating irrigation [36,52], to
optimize water consumption and crop productivity, and reduce the additional manpower
required by the AWD. This topic represents an important and current area of investigation,
which deserves the best attention [58]. The application of information and communication
technologies to develop user-friendly and smart solutions are being tested [20,37,38,59].
Effectively, the issue of rice irrigation automation opens a high opportunity to the hy-
draulic equipment companies, due to the large number of rice growers, as potential clients.
Nonetheless, some research questions should be previously studied.

Here, we present a contribution towards to the AWD automation, recognizing that
it is the right pathway for the future of flooding rice irrigation. It should be highlighted
the importance of a knowledge base to support designers, extensionists, and farmers in
this process.

5. Conclusions

This study confirmed the interest of the AWD irrigation of rice paddies in the Center
of Portugal, a technique to be applied after the vegetative phase of the crop. On one hand,
AWD allows water savings in relation to CF, between 10% and 13%, without significantly
compromising production, and an increase in water productivity between 3.7% and 13.6%.
This saving occurs from the reproductive phase to the end of the season, therefore, during
the period of the greatest water demand to irrigate most crops. On the other hand, AWD
makes it possible to significantly increase the number of days with non-flooded soil,
between 10 and 29 days, with a consequent reduction in methane emissions into the
atmosphere (not assessed in this study).

The practice of waterlogging in the early stages of the crop is highly conditioned by
particularly sensitive agronomic criteria (thermal control, weeds, wind, and phytosanitary
treatments). Therefore, changes of the conventional procedure are not recommended until
the beginning of the reproductive stage. Furthermore, the need to carry out frequent and
planned irrigation events during the AWD period, demands for more accurate inflow
control devices, making place for its automation, and leading towards rice modernization
through smart flooding irrigation systems.

To our knowledge, this is the first report of a study on rice irrigation with AWD in
Portugal. This work contributes a local characterization of AWD effects on water and
rice productivity on paddies in Portugal. Field assessment is crucial to manage the water
use in the agroecosystem to control the long-term negative environmental and public
health impacts.
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